Question Number 191394 by Mingma last updated on 23/Apr/23
Answered by Rasheed.Sindhi last updated on 23/Apr/23
$$\sqrt{{a}}\:+\frac{\mathrm{2022}}{\:\sqrt{{b}}\:}=\mathrm{2023} \\ $$$$\mathrm{2023}\sqrt{{b}}\:−\sqrt{{a}}\:\sqrt{{b}}\:=\mathrm{2022} \\ $$$$\sqrt{{b}}\:\left(\mathrm{2023}−\sqrt{{a}}\:\right)=\mathrm{2}×\mathrm{3}×\mathrm{337} \\ $$$$\begin{cases}{\sqrt{{b}}\:=\mathrm{2}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{3}×\mathrm{337}}\\{\sqrt{{b}}\:=\mathrm{3}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{2}×\mathrm{337}}\\{\sqrt{{b}}=\mathrm{337}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{2}×\mathrm{3}\:}\\{\sqrt{{b}}\:=\mathrm{2}×\mathrm{3}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{337}}\\{\sqrt{{b}}\:=\mathrm{2}×\mathrm{337}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{3}}\\{\sqrt{{b}}\:=\mathrm{3}×\mathrm{337}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{2}}\\{\sqrt{{b}}\:=\mathrm{2}×\mathrm{3}×\mathrm{337}\:\wedge\:\mathrm{2023}−\sqrt{{a}}\:=\mathrm{1}}\end{cases}\: \\ $$$$\begin{cases}{{b}\:=\mathrm{4}\:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{3}×\mathrm{337}\right)^{\mathrm{2}} }\\{{b}\:=\mathrm{9}\:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{2}×\mathrm{337}\right)^{\mathrm{2}} }\\{{b}=\mathrm{337}^{\mathrm{2}} \:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{2}×\mathrm{3}\right)^{\mathrm{2}} \:}\\{{b}\:=\mathrm{36}\:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{337}\right)^{\mathrm{2}} }\\{{b}\:=\mathrm{674}^{\mathrm{2}} \:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{3}\right)^{\mathrm{2}} }\\{{b}\:=\mathrm{1011}^{\mathrm{2}} \:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{2}\right)^{\mathrm{2}} }\\{{b}\:=\mathrm{2023}^{\mathrm{2}} \:\wedge\:{a}\:=\left(\mathrm{2023}−\mathrm{1}\right)^{\mathrm{2}} }\end{cases}\: \\ $$
Commented by Mingma last updated on 23/Apr/23
Very nice solution, sir!