Menu Close

Question-191403




Question Number 191403 by Mingma last updated on 23/Apr/23
Answered by mr W last updated on 23/Apr/23
as Q191305 but θ=45°  r=((ab)/(a+b+(√(a^2 +b^2 ))+(a+(√3)b)sin θ+((√3)a+b)cos θ))  with θ=45°  r=((ab)/( (√(a^2 +b^2 ))+(1+((1+(√3))/( (√2))))(a+b)))  with a=12, b=5:  r=((60)/( 30+((17(1+(√3)))/( (√2)))))≈0.955
$${as}\:{Q}\mathrm{191305}\:{but}\:\theta=\mathrm{45}° \\ $$$${r}=\frac{{ab}}{{a}+{b}+\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\left({a}+\sqrt{\mathrm{3}}{b}\right)\mathrm{sin}\:\theta+\left(\sqrt{\mathrm{3}}{a}+{b}\right)\mathrm{cos}\:\theta} \\ $$$${with}\:\theta=\mathrm{45}° \\ $$$${r}=\frac{{ab}}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\left(\mathrm{1}+\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{2}}}\right)\left({a}+{b}\right)} \\ $$$${with}\:{a}=\mathrm{12},\:{b}=\mathrm{5}: \\ $$$${r}=\frac{\mathrm{60}}{\:\mathrm{30}+\frac{\mathrm{17}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)}{\:\sqrt{\mathrm{2}}}}\approx\mathrm{0}.\mathrm{955} \\ $$
Commented by mr W last updated on 23/Apr/23
Commented by Mingma last updated on 23/Apr/23
Excellent, sir!

Leave a Reply

Your email address will not be published. Required fields are marked *