Menu Close

Question-191854




Question Number 191854 by Rupesh123 last updated on 01/May/23
Answered by a.lgnaoui last updated on 02/May/23
l image comporte 3 principaleSs surfaces  •S1:  Surface du quart ceecle C1 (rayonr_1 =2)  •S2: Surface petit cercleC2(ryon :r_2 )  •S3:Surface portion cercle (rayon r_3 )       avec  r_3 =AB=BC    S_1 =((𝛑×4)/4)=𝛑  ;      OF=OE+EF=OE+r_2 ⇒  2=OE+r_2      OE^2 =2r_2 ^2 ⇒OE=r_2 (√2)      ⇒  r_2 =2(√2) −2      S_2 =𝛑r_2 ^2 =4𝛑((√2)−1 )^2                    ((S_1 −S_2 )/2)  =A_1 +(A_2 /2)  Calcul   A_2   A_2 =OH^2 −(S_2 /4)=r_2 ^2 −((𝛑r_2 ^2 )/4)=(3/4)𝛑r_2 ^2   donc  A_1 +A_2 =((S_1 −S_2 )/2)+(3/8)𝛑r_2 ^2         =((𝛑−4𝛑((√2)−1 )^2 )/2)+(3/8)𝛑×4((√2) −1)^2                     A_1 +A_2 =((√2) −1)𝛑  •calcul A_3   Surface Portion  arc de cercle OAC    Surface( Arc de cercle BAC)−(Surface triangle OAB)  ⇒Surface arc=𝛑AB^2 ((𝛉/(2π)))(𝛉   en radian)       r_3 =AB=2(√2)       (B centre cercle C3)  sin θ=cos θ=((√2)/2)⇒   θ=(π/4)  S_3 =((𝛑×8)/8)=𝛑  surface triangle =((AB^2 )/2)=2  ⇒A_3 =(S_3 −4)        A3=𝛑−2  Conclusion:     S=A_1 +A_2 +A_3         ((√2) −1)𝛑+𝛑−2            S=𝛑(√2) −2
limagecomporte3principaleSssurfacesS1:SurfaceduquartceecleC1(rayonr1=2)S2:SurfacepetitcercleC2(ryon:r2)S3:Surfaceportioncercle(rayonr3)avecr3=AB=BCS1=π×44=π;OF=OE+EF=OE+r22=OE+r2OE2=2r22OE=r22r2=222S2=πr22=4π(21)2S1S22=A1+A22CalculA2A2=OH2S24=r22πr224=34πr22doncA1+A2=S1S22+38πr22=π4π(21)22+38π×4(21)2A1+A2=(21)πcalculA3SurfacePortionarcdecercleOACSurface(ArcdecercleBAC)(SurfacetriangleOAB)Surfacearc=πAB2(θ2π)(θenradian)r3=AB=22(BcentrecercleC3)sinθ=cosθ=22θ=π4S3=π×88=πsurfacetriangle=AB22=2A3=(S34)A3=π2Conclusion:S=A1+A2+A3(21)π+π2S=π22
Commented by a.lgnaoui last updated on 03/May/23

Leave a Reply

Your email address will not be published. Required fields are marked *