Menu Close

Question-192241




Question Number 192241 by yaslm last updated on 12/May/23
Answered by Frix last updated on 12/May/23
Z_1 =(((1/2)e^(−ix) )/(1−(1/2)e^(−ix) ))=−((1−2cos x)/(5−4cos x))−((2sin x)/(5−4cos x))i  Z_2 =(1/(1−(1/2)e^(ix) ))=((2(2−cos x))/(5−4cos x))+((2sin x)/(5−4cos x))i  Z_1 +Z_2 =(3/(5−4cos x))
$${Z}_{\mathrm{1}} =\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}{x}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}{x}} }=−\frac{\mathrm{1}−\mathrm{2cos}\:{x}}{\mathrm{5}−\mathrm{4cos}\:{x}}−\frac{\mathrm{2sin}\:{x}}{\mathrm{5}−\mathrm{4cos}\:{x}}\mathrm{i} \\ $$$${Z}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{{ix}} }=\frac{\mathrm{2}\left(\mathrm{2}−\mathrm{cos}\:{x}\right)}{\mathrm{5}−\mathrm{4cos}\:{x}}+\frac{\mathrm{2sin}\:{x}}{\mathrm{5}−\mathrm{4cos}\:{x}}\mathrm{i} \\ $$$${Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{5}−\mathrm{4cos}\:{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *