Menu Close

Question-192345




Question Number 192345 by Mingma last updated on 15/May/23
Answered by aleks041103 last updated on 15/May/23
∫_0 ^( 1) (f(1+x)+f(1−x))dx=  =∫_0 ^1 f(1+x)dx − ∫_0 ^( 1) f(1−x)d(−x)=  =∫_1 ^( 2) f(x)dx−∫_1 ^( 0) f(x)dx=  =∫_0 ^( 2) f(x)dx  ⇒∫_0 ^( 2) f(x)dx = ∫_0 ^( 1) (f(1+x)+f(1−x))dx=  =∫_0 ^( 1) x^(2022) dx=(1/(2023))
$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({f}\left(\mathrm{1}+{x}\right)+{f}\left(\mathrm{1}−{x}\right)\right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left(\mathrm{1}+{x}\right){dx}\:−\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {f}\left(\mathrm{1}−{x}\right){d}\left(−{x}\right)= \\ $$$$=\int_{\mathrm{1}} ^{\:\mathrm{2}} {f}\left({x}\right){dx}−\int_{\mathrm{1}} ^{\:\mathrm{0}} {f}\left({x}\right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{2}} {f}\left({x}\right){dx} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\:\mathrm{2}} {f}\left({x}\right){dx}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left({f}\left(\mathrm{1}+{x}\right)+{f}\left(\mathrm{1}−{x}\right)\right){dx}= \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\mathrm{2022}} {dx}=\frac{\mathrm{1}}{\mathrm{2023}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *