Menu Close

Question-192348




Question Number 192348 by leandrosriv02 last updated on 15/May/23
Answered by mehdee42 last updated on 15/May/23
AB=(√(a^2 +b^2 ))  M  is midpoint <AB>⇒M((a/2) , (b/2))  ⇒0M=(1/2)(√(a^2 +b^2 )) ⇒OM=BM=AM  tip ∴   middle of the chord ,is equal to half the chord
$${AB}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${M}\:\:{is}\:{midpoint}\:<{AB}>\Rightarrow{M}\left(\frac{{a}}{\mathrm{2}}\:,\:\frac{{b}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{0}{M}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\Rightarrow{OM}={BM}={AM} \\ $$$${tip}\:\therefore\: \\ $$$${middle}\:{of}\:{the}\:{chord}\:,{is}\:{equal}\:{to}\:{half}\:{the}\:{chord} \\ $$
Answered by Nimnim111118 last updated on 15/May/23
AB=(√(a^2 +b^2 )) ⇒ AM=BM=(1/2)(√(a^2 +b^2 ))  Coordinate of M=(((a+0)/2),((0+b)/2))=((a/2),(b/2))  then CM=(√((0−(a/2))^2 +(0−(b/2))^2 ))=(√((a^2 /4)+(b^2 /4)))=(1/2)(√(a^2 +b^2 ))  ∴ AM=BM=CM=(1/2)(√(a^2 +b^2 ))  Hence, M is equidistant from the vertices of △ABC.
$$\mathrm{AB}=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{AM}=\mathrm{BM}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} } \\ $$$$\mathrm{Coordinate}\:\mathrm{of}\:\mathrm{M}=\left(\frac{\mathrm{a}+\mathrm{0}}{\mathrm{2}},\frac{\mathrm{0}+\mathrm{b}}{\mathrm{2}}\right)=\left(\frac{\mathrm{a}}{\mathrm{2}},\frac{\mathrm{b}}{\mathrm{2}}\right) \\ $$$$\mathrm{then}\:\mathrm{CM}=\sqrt{\left(\mathrm{0}−\frac{\mathrm{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{0}−\frac{\mathrm{b}}{\mathrm{2}}\right)^{\mathrm{2}} }=\sqrt{\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{4}}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} } \\ $$$$\therefore\:\mathrm{AM}=\mathrm{BM}=\mathrm{CM}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} } \\ $$$$\mathrm{Hence},\:\mathrm{M}\:\mathrm{is}\:\mathrm{equidistant}\:\mathrm{from}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\bigtriangleup\mathrm{ABC}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *