Menu Close

Question-192349




Question Number 192349 by 073 last updated on 15/May/23
Answered by mehdee42 last updated on 15/May/23
I=∫((cos^4 x(√(1+sinx)))/(cosx)) dx=∫(1−sin^2 x)(√(1+sinx)) cosxdx  let : 1+sinx=u^2  ⇒cosxdx=2udu  ⇒I=2∫(−u^2 +2u)u^2 du =2(−(1/5)u^5 +(1/2)u^4 )+c  ⇒I=(1+sinx)^2 ((1/2)−((2(√(1+sinx)))/5))+c
$${I}=\int\frac{{cos}^{\mathrm{4}} {x}\sqrt{\mathrm{1}+{sinx}}}{{cosx}}\:{dx}=\int\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)\sqrt{\mathrm{1}+{sinx}}\:{cosxdx} \\ $$$${let}\::\:\mathrm{1}+{sinx}={u}^{\mathrm{2}} \:\Rightarrow{cosxdx}=\mathrm{2}{udu} \\ $$$$\Rightarrow{I}=\mathrm{2}\int\left(−{u}^{\mathrm{2}} +\mathrm{2}{u}\right){u}^{\mathrm{2}} {du}\:=\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{5}}{u}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{2}}{u}^{\mathrm{4}} \right)+{c} \\ $$$$\Rightarrow{I}=\left(\mathrm{1}+{sinx}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{2}\sqrt{\mathrm{1}+{sinx}}}{\mathrm{5}}\right)+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *