Question Number 192388 by sudipmoi last updated on 16/May/23
Answered by aleks041103 last updated on 22/May/23
$${p}>\mathrm{0} \\ $$$$\int_{\mathrm{1}} ^{\:\infty} \frac{{sin}\left({x}\right){dx}}{{x}^{{p}} }=\left[−\frac{{cos}\left({x}\right)}{{x}^{{p}} }\right]_{\mathrm{1}} ^{\infty} −\int_{\mathrm{1}} ^{\:\infty} \left(−{cos}\left({x}\right)\right){d}\left(\frac{\mathrm{1}}{{x}^{{p}} }\right)= \\ $$$$={cos}\left(\mathrm{1}\right)−{p}\int_{\mathrm{1}} ^{\infty} \frac{{cos}\left({x}\right)}{{x}^{{p}+\mathrm{1}} }{dx} \\ $$$$\int_{\mathrm{1}} ^{\infty} \mid\frac{{cos}\left({x}\right)}{{x}^{{p}+\mathrm{1}} }\mid{dx}<\int_{\mathrm{1}} ^{\:\infty} \frac{{dx}}{{x}^{{p}+\mathrm{1}} }=−\left[\frac{\mathrm{1}}{{px}^{{p}} }\right]_{\mathrm{1}} ^{\infty} =\frac{\mathrm{1}}{{p}} \\ $$$$\Rightarrow{the}\:{integral}\:{is}\:{absolutely}\:{convergent} \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\infty} \frac{{cos}\left({x}\right)}{{x}^{{p}+\mathrm{1}} }{dx}\:{converges} \\ $$$$\Rightarrow\int_{\mathrm{1}} ^{\:\infty} \frac{{sin}\left({x}\right){dx}}{{x}^{{p}} }\:{converges}\:{for}\:{p}>\mathrm{0} \\ $$