Question Number 192542 by peter frank last updated on 20/May/23
Answered by Frix last updated on 20/May/23
$$\sqrt{\mathrm{i}}=\sqrt{\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{2}}} }=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$$\left(\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}} \right)^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}} =\:\:\:\:\:\:\:\:\:\:\left[\left({a}^{{b}} \right)^{{c}} ={a}^{{bc}} \right] \\ $$$$ \\ $$$$=\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{4}}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}\right)} =\mathrm{e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}+\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{i}} = \\ $$$$ \\ $$$$=\mathrm{e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \mathrm{e}^{\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{i}} =\:\:\:\:\:\:\:\:\:\:\left[{r}\mathrm{e}^{\mathrm{i}\theta} ={r}\mathrm{cos}\:\theta\:+\mathrm{i}{r}\mathrm{sin}\:\theta\right] \\ $$$$ \\ $$$$=\mathrm{e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \mathrm{cos}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\:+\mathrm{ie}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \mathrm{sin}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$
Answered by Spillover last updated on 21/May/23
$${Let}\:\:\:{y}=\left(\sqrt{{i}}\:\right)^{\sqrt{{i}}} \: \\ $$$$\mathrm{ln}\:{y}=\mathrm{ln}\:\left(\sqrt{{i}}\:\right)^{\sqrt{{i}}} \:\: \\ $$$$\mathrm{ln}\:{y}=\sqrt{{i}}\mathrm{ln}\:\sqrt{{i}}\:\:\: \\ $$$${e}^{{i}\theta} =\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta \\ $$$${when}\:\:\:\:\theta=\frac{\pi}{\mathrm{2}}\:\:\rightarrow\:\:{e}^{{i}\frac{\pi}{\mathrm{2}}} =\mathrm{cos}\:\frac{\pi}{\mathrm{2}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}={i} \\ $$$$\:{e}^{{i}\frac{\pi}{\mathrm{2}}} ={i}\:\:\:\left(\:{e}^{{i}\frac{\pi}{\mathrm{2}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\left({i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:=\:{e}^{{i}\frac{\pi}{\mathrm{4}}} =\left({i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\sqrt{{i}} \\ $$$$\mathrm{ln}\:{y}=\sqrt{{i}}\mathrm{ln}\:\sqrt{{i}}\:\:\:\:\:\:\:\mathrm{ln}\:{y}={e}^{{i}\frac{\pi}{\mathrm{4}}} \mathrm{ln}\:\left({e}^{{i}\frac{\pi}{\mathrm{4}}} \right) \\ $$$$\mathrm{ln}\:{y}={e}^{{i}\frac{\pi}{\mathrm{4}}} \mathrm{ln}\:\left({e}^{{i}\frac{\pi}{\mathrm{4}}} \right) \\ $$$$\mathrm{ln}\:{y}={e}^{{i}\frac{\pi}{\mathrm{4}}} .\frac{{i}\pi}{\mathrm{4}} \\ $$$$\mathrm{ln}\:{y}=\left(\mathrm{cos}\:\frac{\pi}{\mathrm{4}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\right).\frac{{i}\pi}{\mathrm{4}} \\ $$$$\mathrm{ln}\:{y}=\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right).\frac{{i}\pi}{\mathrm{4}}=\left(\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right) \\ $$$$\mathrm{ln}\:{y}=\left(\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right)=\left(\frac{−\pi\sqrt{\mathrm{2}}}{\mathrm{8}}+\:\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right) \\ $$$${e}^{\left(\frac{−\pi\sqrt{\mathrm{2}}}{\mathrm{8}}+\:\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right)} ={e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} .{e}^{\frac{{i}\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \\ $$$${e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} .\left(\mathrm{cos}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right) \\ $$$$\left({e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} .\mathrm{cos}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}+{ie}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \mathrm{sin}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}\right) \\ $$$${real}\:{part}\:\:\:\:\:\:\:\:\:\:{e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} .\mathrm{cos}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$${Immarginary}\:{part}\:\:{e}^{−\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}}} \mathrm{sin}\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$
Commented by Frix last updated on 21/May/23
$$\mathrm{You}\:\mathrm{need}\:\mathrm{17}\:\mathrm{lines}\:\mathrm{where}\:\mathrm{I}\:\mathrm{need}\:\mathrm{5}.\:\mathrm{Congrats} \\ $$$$\mathrm{you}'\mathrm{re}\:\mathrm{240\%}\:\mathrm{ahead}! \\ $$$$\boldsymbol{{BUT}}:\:\mathrm{You}\:\mathrm{lost}\:\pi\:\mathrm{somewhere}. \\ $$
Commented by Frix last updated on 21/May/23
$$\mathrm{See}\:\mathrm{question}\:\mathrm{192580} \\ $$