Menu Close

Question-192756




Question Number 192756 by mokys last updated on 26/May/23
Commented by mokys last updated on 26/May/23
Im cant solve this because its very hard can helps me pleas ?
$${Im}\:{cant}\:{solve}\:{this}\:{because}\:{its}\:{very}\:{hard}\:{can}\:{helps}\:{me}\:{pleas}\:? \\ $$
Answered by witcher3 last updated on 02/Jun/23
y′=y^((1))  for all the rest  y^((3)) −2x^2 y′′+5xy′+3y=cos(x)  Suppose ∃(y_1 ,y_2 )∈C_3 ^2  such that y_1 and y_2 are  solution   ⇒f=y_1 −y_2  is solution of  f^((3)) −2x^2 f^((2)) +5xf^((1)) +3f=0....(E)  f(−2)=f′(−2)=f^((2)) (−2)=0  applied (E)⇒f^((3)) =0  by reccursion  f^((3)) =2x^2 f^(′′) −5xf′−3f⇒f∈C_4     reccurssiv⇒f∈C_∞   and ∀n∈N f^((2)) (−2)=0  f^((n)) (x)=Σ_(i=0) ^n p(x)f^((i)) (x),∃p∈R^2 [X]  applie taylor arround (−2)  f(x)=Σ_(k=0) ^∞ ((f^((k)) (−2))/(k!))(x+2)^k   but f^((k)) (2)=0,∀k∈N  ⇒f(x)=0  y_1 −y_2 =0⇒y_1 =y_2   ∃ unique solution
$$\mathrm{y}'=\mathrm{y}^{\left(\mathrm{1}\right)} \:\mathrm{for}\:\mathrm{all}\:\mathrm{the}\:\mathrm{rest} \\ $$$$\mathrm{y}^{\left(\mathrm{3}\right)} −\mathrm{2x}^{\mathrm{2}} \mathrm{y}''+\mathrm{5xy}'+\mathrm{3y}=\mathrm{cos}\left(\mathrm{x}\right) \\ $$$$\mathrm{Suppose}\:\exists\left(\mathrm{y}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{2}} \right)\in\mathrm{C}_{\mathrm{3}} ^{\mathrm{2}} \:\mathrm{such}\:\mathrm{that}\:\mathrm{y}_{\mathrm{1}} \mathrm{and}\:\mathrm{y}_{\mathrm{2}} \mathrm{are} \\ $$$$\mathrm{solution}\: \\ $$$$\Rightarrow\mathrm{f}=\mathrm{y}_{\mathrm{1}} −\mathrm{y}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{f}^{\left(\mathrm{3}\right)} −\mathrm{2x}^{\mathrm{2}} \mathrm{f}^{\left(\mathrm{2}\right)} +\mathrm{5xf}^{\left(\mathrm{1}\right)} +\mathrm{3f}=\mathrm{0}….\left(\boldsymbol{\mathrm{E}}\right) \\ $$$$\mathrm{f}\left(−\mathrm{2}\right)=\mathrm{f}'\left(−\mathrm{2}\right)=\mathrm{f}^{\left(\mathrm{2}\right)} \left(−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{applied}\:\left(\mathrm{E}\right)\Rightarrow\mathrm{f}^{\left(\mathrm{3}\right)} =\mathrm{0} \\ $$$$\mathrm{by}\:\mathrm{reccursion} \\ $$$$\mathrm{f}^{\left(\mathrm{3}\right)} =\mathrm{2x}^{\mathrm{2}} \mathrm{f}^{''} −\mathrm{5xf}'−\mathrm{3f}\Rightarrow\mathrm{f}\in\mathrm{C}_{\mathrm{4}} \\ $$$$ \\ $$$$\mathrm{reccurssiv}\Rightarrow\mathrm{f}\in\mathrm{C}_{\infty} \\ $$$$\mathrm{and}\:\forall\mathrm{n}\in\mathbb{N}\:\mathrm{f}^{\left(\mathrm{2}\right)} \left(−\mathrm{2}\right)=\mathrm{0} \\ $$$$\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)=\underset{\mathrm{i}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{p}\left(\mathrm{x}\right)\mathrm{f}^{\left(\mathrm{i}\right)} \left(\mathrm{x}\right),\exists\mathrm{p}\in\mathbb{R}^{\mathrm{2}} \left[\mathrm{X}\right] \\ $$$$\mathrm{applie}\:\mathrm{taylor}\:\mathrm{arround}\:\left(−\mathrm{2}\right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{f}^{\left(\mathrm{k}\right)} \left(−\mathrm{2}\right)}{\mathrm{k}!}\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{k}} \\ $$$$\mathrm{but}\:\mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{2}\right)=\mathrm{0},\forall\mathrm{k}\in\mathbb{N} \\ $$$$\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\mathrm{y}_{\mathrm{1}} −\mathrm{y}_{\mathrm{2}} =\mathrm{0}\Rightarrow\mathrm{y}_{\mathrm{1}} =\mathrm{y}_{\mathrm{2}} \\ $$$$\exists\:\mathrm{unique}\:\mathrm{solution} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *