Menu Close

Question-192765




Question Number 192765 by Mingma last updated on 26/May/23
Answered by ajfour last updated on 26/May/23
Commented by ajfour last updated on 26/May/23
tan θ=2((1/3))  r(1+cos θ)=(1/9)  rsin θ=h−(1/3)  ⇒  r=((1/9)/(1+(3/( (√(13))))))=((13−3(√(13)))/(36))  h=(1/3)+((√(13))/(9((√(13))+3)))=((25−3(√(13)))/(36))  G=(1/(81))+(1/2)(2r+rcos θ)(h−(1/3))            −(π−θ)(r^2 /2)
$$\mathrm{tan}\:\theta=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${r}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$${r}\mathrm{sin}\:\theta={h}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:{r}=\frac{\mathrm{1}/\mathrm{9}}{\mathrm{1}+\frac{\mathrm{3}}{\:\sqrt{\mathrm{13}}}}=\frac{\mathrm{13}−\mathrm{3}\sqrt{\mathrm{13}}}{\mathrm{36}} \\ $$$${h}=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\sqrt{\mathrm{13}}}{\mathrm{9}\left(\sqrt{\mathrm{13}}+\mathrm{3}\right)}=\frac{\mathrm{25}−\mathrm{3}\sqrt{\mathrm{13}}}{\mathrm{36}} \\ $$$${G}=\frac{\mathrm{1}}{\mathrm{81}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{r}+{r}\mathrm{cos}\:\theta\right)\left({h}−\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:−\left(\pi−\theta\right)\frac{{r}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$
Commented by Mingma last updated on 28/May/23
Nice work!

Leave a Reply

Your email address will not be published. Required fields are marked *