Menu Close

Question-192780




Question Number 192780 by ajfour last updated on 27/May/23
Commented by ajfour last updated on 27/May/23
Find m in terms of c, hence p.
Answered by ajfour last updated on 27/May/23
y=x^3 −x−c  0=p^3 −p−c  y=mx  y=−x^2 +hx+1−h  c=−p^2 +hp+1−h  p^3 =p+c  p+c=h(hp+1−h−c)+(1−h−c)p  ⇒  {h^2 −(h+c)}p=h^2 −(1−c)h+c  x^2 +(m−h)x=1−h  double root  ⇒     (m−h)^2 =4(h−1)  ⇒  h^2 −4h(m+1)+m^2 +4=0  (h−2m−2)^2 =m(3m+8)  {((h^2 −(1−c)h+c)/(h^2 −h−c))}^2 =h{((h^2 −(1−c)h+c)/(h^2 −h−c))}                                        +1−h−c  ⇒ {(((4m+3+c)h+c)/((4m+3)h−c))}^2      =h{(((4m+3+c)h+c)/((4m+3)h−c))}+1−h−c  ....
$${y}={x}^{\mathrm{3}} −{x}−{c} \\ $$$$\mathrm{0}={p}^{\mathrm{3}} −{p}−{c} \\ $$$${y}={mx} \\ $$$${y}=−{x}^{\mathrm{2}} +{hx}+\mathrm{1}−{h} \\ $$$${c}=−{p}^{\mathrm{2}} +{hp}+\mathrm{1}−{h} \\ $$$${p}^{\mathrm{3}} ={p}+{c} \\ $$$${p}+{c}={h}\left({hp}+\mathrm{1}−{h}−{c}\right)+\left(\mathrm{1}−{h}−{c}\right){p} \\ $$$$\Rightarrow\:\:\left\{{h}^{\mathrm{2}} −\left({h}+{c}\right)\right\}{p}={h}^{\mathrm{2}} −\left(\mathrm{1}−{c}\right){h}+{c} \\ $$$${x}^{\mathrm{2}} +\left({m}−{h}\right){x}=\mathrm{1}−{h} \\ $$$${double}\:{root}\:\:\Rightarrow \\ $$$$\:\:\:\left({m}−{h}\right)^{\mathrm{2}} =\mathrm{4}\left({h}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:{h}^{\mathrm{2}} −\mathrm{4}{h}\left({m}+\mathrm{1}\right)+{m}^{\mathrm{2}} +\mathrm{4}=\mathrm{0} \\ $$$$\left({h}−\mathrm{2}{m}−\mathrm{2}\right)^{\mathrm{2}} ={m}\left(\mathrm{3}{m}+\mathrm{8}\right) \\ $$$$\left\{\frac{{h}^{\mathrm{2}} −\left(\mathrm{1}−{c}\right){h}+{c}}{{h}^{\mathrm{2}} −{h}−{c}}\right\}^{\mathrm{2}} ={h}\left\{\frac{{h}^{\mathrm{2}} −\left(\mathrm{1}−{c}\right){h}+{c}}{{h}^{\mathrm{2}} −{h}−{c}}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{1}−{h}−{c} \\ $$$$\Rightarrow\:\left\{\frac{\left(\mathrm{4}{m}+\mathrm{3}+{c}\right){h}+{c}}{\left(\mathrm{4}{m}+\mathrm{3}\right){h}−{c}}\right\}^{\mathrm{2}} \\ $$$$\:\:\:={h}\left\{\frac{\left(\mathrm{4}{m}+\mathrm{3}+{c}\right){h}+{c}}{\left(\mathrm{4}{m}+\mathrm{3}\right){h}−{c}}\right\}+\mathrm{1}−{h}−{c} \\ $$$$…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *