Menu Close

Question-192803




Question Number 192803 by mokys last updated on 27/May/23
Commented by mokys last updated on 28/May/23
??????
$$?????? \\ $$
Answered by MM42 last updated on 29/May/23
Q1:  3+2t+6t−t=−4⇒t=−1⇒p(1,−2,−1)  u_L ^→ =n_P ^→ =(1,3,−1)⇒L′: x=t+1  &  y=3t−2  &  z=−t−1  Q2:  AB(2,0,−1) ,  AC(2,−1,0)  N^→ =AB^→ ×AC^→ =(1,2,2)⇒P : x+2y+2z=0  ⇒PH=((∣1+8∣)/( (√(1+4+4))))=1 ✓  Q3:  it is not clear
$${Q}\mathrm{1}: \\ $$$$\mathrm{3}+\mathrm{2}{t}+\mathrm{6}{t}−{t}=−\mathrm{4}\Rightarrow{t}=−\mathrm{1}\Rightarrow{p}\left(\mathrm{1},−\mathrm{2},−\mathrm{1}\right) \\ $$$$\overset{\rightarrow} {{u}}_{{L}} =\overset{\rightarrow} {{n}}_{{P}} =\left(\mathrm{1},\mathrm{3},−\mathrm{1}\right)\Rightarrow{L}':\:{x}={t}+\mathrm{1}\:\:\&\:\:{y}=\mathrm{3}{t}−\mathrm{2}\:\:\&\:\:{z}=−{t}−\mathrm{1} \\ $$$${Q}\mathrm{2}: \\ $$$${AB}\left(\mathrm{2},\mathrm{0},−\mathrm{1}\right)\:,\:\:{AC}\left(\mathrm{2},−\mathrm{1},\mathrm{0}\right) \\ $$$$\overset{\rightarrow} {{N}}={A}\overset{\rightarrow} {{B}}×{A}\overset{\rightarrow} {{C}}=\left(\mathrm{1},\mathrm{2},\mathrm{2}\right)\Rightarrow{P}\::\:{x}+\mathrm{2}{y}+\mathrm{2}{z}=\mathrm{0} \\ $$$$\Rightarrow{PH}=\frac{\mid\mathrm{1}+\mathrm{8}\mid}{\:\sqrt{\mathrm{1}+\mathrm{4}+\mathrm{4}}}=\mathrm{1}\:\checkmark \\ $$$${Q}\mathrm{3}: \\ $$$${it}\:{is}\:{not}\:{clear} \\ $$
Commented by MM42 last updated on 29/May/23
Commented by MM42 last updated on 29/May/23

Leave a Reply

Your email address will not be published. Required fields are marked *