Menu Close

Question-192841




Question Number 192841 by TUN last updated on 29/May/23
Answered by witcher3 last updated on 02/Jun/23
f(a)=∫_(−a) ^a (dx/((1+x^2 )(1+e^(bx) )))≤∫_(−a) ^a (dx/((1+x^2 )))=2tan^(−1) (a)  integral cv  f(a)=∫_a ^(−a) ((d(−x))/((1+x^2 )(1+e^(−bx) )))  =∫_(−a) ^a (e^(bx) /((1+x^2 )(1+e^(bx) )))dx  2f(a)=∫_(−a) ^a ((e^(bx) +1)/((1+x^2 )(1+e^(bx) )))dx  =∫_(−a) ^a (dx/((1+x^2 )))=2tan^(−1) (a)  f(a)=tan^(−1) (a)⇒lim_(a→∞) f(a)=(π/2)
$$\mathrm{f}\left(\mathrm{a}\right)=\int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{e}^{\mathrm{bx}} \right)}\leqslant\int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}=\mathrm{2tan}^{−\mathrm{1}} \left(\mathrm{a}\right) \\ $$$$\mathrm{integral}\:\mathrm{cv} \\ $$$$\mathrm{f}\left(\mathrm{a}\right)=\int_{\mathrm{a}} ^{−\mathrm{a}} \frac{\mathrm{d}\left(−\mathrm{x}\right)}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{e}^{−\mathrm{bx}} \right)} \\ $$$$=\int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{e}^{\mathrm{bx}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{e}^{\mathrm{bx}} \right)}\mathrm{dx} \\ $$$$\mathrm{2f}\left(\mathrm{a}\right)=\int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{e}^{\mathrm{bx}} +\mathrm{1}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{e}^{\mathrm{bx}} \right)}\mathrm{dx} \\ $$$$=\int_{−\mathrm{a}} ^{\mathrm{a}} \frac{\mathrm{dx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}=\mathrm{2tan}^{−\mathrm{1}} \left(\mathrm{a}\right) \\ $$$$\mathrm{f}\left(\mathrm{a}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{a}\right)\Rightarrow\underset{\mathrm{a}\rightarrow\infty} {\mathrm{lim}f}\left(\mathrm{a}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *