Menu Close

Question-192917




Question Number 192917 by BaliramKumar last updated on 31/May/23
Answered by AST last updated on 31/May/23
Let tanθ=t,cotθ=c; tc=1  t^2 +c^2 =(t+c)^2 −2tc=(t+c)^2 −2  t^5 +c^5 =(t+c)^5 −5t^4 c−10t^3 c^2 −10t^2 c^3 −5tc^4   ⇒2525=(t+c)^5 −5t^3 −10t−10c−5c^3   =(t+c)^5 −5(t+c)^3 +5(t+c)=2525  t+c=5 works⇒t^2 +c^2 =25−2=23
$${Let}\:{tan}\theta={t},{cot}\theta={c};\:{tc}=\mathrm{1} \\ $$$${t}^{\mathrm{2}} +{c}^{\mathrm{2}} =\left({t}+{c}\right)^{\mathrm{2}} −\mathrm{2}{tc}=\left({t}+{c}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$${t}^{\mathrm{5}} +{c}^{\mathrm{5}} =\left({t}+{c}\right)^{\mathrm{5}} −\mathrm{5}{t}^{\mathrm{4}} {c}−\mathrm{10}{t}^{\mathrm{3}} {c}^{\mathrm{2}} −\mathrm{10}{t}^{\mathrm{2}} {c}^{\mathrm{3}} −\mathrm{5}{tc}^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{2525}=\left({t}+{c}\right)^{\mathrm{5}} −\mathrm{5}{t}^{\mathrm{3}} −\mathrm{10}{t}−\mathrm{10}{c}−\mathrm{5}{c}^{\mathrm{3}} \\ $$$$=\left({t}+{c}\right)^{\mathrm{5}} −\mathrm{5}\left({t}+{c}\right)^{\mathrm{3}} +\mathrm{5}\left({t}+{c}\right)=\mathrm{2525} \\ $$$${t}+{c}=\mathrm{5}\:{works}\Rightarrow{t}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{25}−\mathrm{2}=\mathrm{23} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *