Question Number 192933 by mnjuly1970 last updated on 31/May/23
Answered by MM42 last updated on 01/Jun/23
$${ln}\left(\mathrm{1}−{x}\right)={u}\Rightarrow\frac{−\mathrm{1}}{\mathrm{1}−{x}}{dx}={du}\:\:\&{i}\:{x}^{{n}−\mathrm{1}} {dx}={dv}\Rightarrow\frac{{x}^{{n}} }{{n}}={v} \\ $$$$\Rightarrow{I}_{{n}} =\int{x}^{{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right){dx}=\frac{{x}^{{n}} {ln}\left(\mathrm{1}−{x}\right)}{{n}}\:+\frac{\mathrm{1}}{{n}}\int\:\frac{{x}^{{n}} }{\mathrm{1}−{x}}{dx} \\ $$$$\int\:\frac{{x}^{{n}} }{\mathrm{1}−{x}}{dx}=−\int\frac{\mathrm{1}−{x}^{{n}} −\mathrm{1}}{\mathrm{1}−{x}}{dx} \\ $$$$=−\int\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +…+{x}^{{n}−\mathrm{1}} \right){dx}+\int\frac{{dx}}{\mathrm{1}−{x}} \\ $$$$={x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+…+\frac{{x}^{{n}} }{{n}}−{ln}\left(\mathrm{1}−{x}\right) \\ $$$$\Rightarrow\phi_{{n}} ={lim}_{{x}\rightarrow\mathrm{1}} \left(\:\frac{{x}^{{n}} {ln}\left(\mathrm{1}−{x}\right)}{{n}}−\frac{{ln}\left(\mathrm{1}−{x}\right)}{{n}}\right)−\frac{\mathrm{1}}{{n}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}\right) \\ $$$$={lim}_{{x}\rightarrow\mathrm{1}} \:\left(\frac{\mathrm{1}+{x}+{x}^{\mathrm{2}} +…+{x}^{{n}−\mathrm{1}} }{{n}}\right)\frac{{ln}\left(\mathrm{1}−{x}\right)}{\frac{\mathrm{1}}{{x}−\mathrm{1}}}=\mathrm{0} \\ $$$$\Rightarrow\phi_{{n}} =−\frac{\mathrm{1}}{{n}}\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}\right) \\ $$
Answered by witcher3 last updated on 01/Jun/23
$$\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{x}\rightarrow\frac{\mathrm{1}−\mathrm{t}}{\mathrm{1}+\mathrm{t}}\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}}\right)}{\frac{\mathrm{2}}{\mathrm{1}+\mathrm{t}}}.\frac{\mathrm{2}}{\left(\mathrm{1}+\mathrm{t}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{2}\right)}{\mathrm{1}+\mathrm{t}}+\frac{\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}−\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\left[_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{t}\right)\right]−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}\right)}{\mathrm{t}}\mathrm{dt} \\ $$$$=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\left(−\mathrm{t}\right)\right)}{\left(−\mathrm{t}\right)}\mathrm{d}\left(−\mathrm{t}\right) \\ $$$$=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}+\mathrm{Li}_{\mathrm{2}} \left(−\mathrm{1}\right)=\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{12}} \\ $$$$ \\ $$