Menu Close

Question-192936




Question Number 192936 by Abdullahrussell last updated on 31/May/23
Answered by Frix last updated on 31/May/23
Obviously x^2 =3∨x^2 =4 ⇒  x=±(√3)∨x=±2  If we use ((−z))^(1/3) =−(z)^(1/3)  also x^2 =12 ⇒ x=±2(√3)
$$\mathrm{Obviously}\:{x}^{\mathrm{2}} =\mathrm{3}\vee{x}^{\mathrm{2}} =\mathrm{4}\:\Rightarrow \\ $$$${x}=\pm\sqrt{\mathrm{3}}\vee{x}=\pm\mathrm{2} \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{use}\:\sqrt[{\mathrm{3}}]{−{z}}=−\sqrt[{\mathrm{3}}]{{z}}\:\mathrm{also}\:{x}^{\mathrm{2}} =\mathrm{12}\:\Rightarrow\:{x}=\pm\mathrm{2}\sqrt{\mathrm{3}} \\ $$
Answered by MM42 last updated on 31/May/23
(√(x^2 −3))=u⇒x^2 =u^2 +3  ⇒u+((1−u^2 ))^(1/3) =1⇒1−u^2 =(1−u)^3   ⇒u(u−1)(u−3)=0  ⇒u=0⇒x^2 =3⇒x=±(√3)  & u=1⇒x^2 =4⇒x=±2  & u=3⇒x^2 =12⇒x=±2(√3)
$$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}}={u}\Rightarrow{x}^{\mathrm{2}} ={u}^{\mathrm{2}} +\mathrm{3} \\ $$$$\Rightarrow{u}+\sqrt[{\mathrm{3}}]{\mathrm{1}−{u}^{\mathrm{2}} }=\mathrm{1}\Rightarrow\mathrm{1}−{u}^{\mathrm{2}} =\left(\mathrm{1}−{u}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{u}\left({u}−\mathrm{1}\right)\left({u}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{u}=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} =\mathrm{3}\Rightarrow{x}=\pm\sqrt{\mathrm{3}} \\ $$$$\&\:{u}=\mathrm{1}\Rightarrow{x}^{\mathrm{2}} =\mathrm{4}\Rightarrow{x}=\pm\mathrm{2} \\ $$$$\&\:{u}=\mathrm{3}\Rightarrow{x}^{\mathrm{2}} =\mathrm{12}\Rightarrow{x}=\pm\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$ \\ $$
Commented by MM42 last updated on 31/May/23
the diagram below shows the state[  of the threads  f(x)=(√(x^2 −3))+((4−x^2 ))^(1/3) −1
$${the}\:{diagram}\:{below}\:{shows}\:{the}\:{state}\left[\right. \\ $$$${of}\:{the}\:{threads} \\ $$$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{3}}+\sqrt[{\mathrm{3}}]{\mathrm{4}−{x}^{\mathrm{2}} }−\mathrm{1} \\ $$
Commented by MM42 last updated on 31/May/23

Leave a Reply

Your email address will not be published. Required fields are marked *