Menu Close

Question-193026




Question Number 193026 by Mingma last updated on 02/Jun/23
Answered by aleks041103 last updated on 02/Jun/23
(3+(√5))^3 =3^3 +3×3^2 ×(√5)+3×3×5+5(√5)=  =27+45+32(√5)=72+32(√5)  32(√5)=(√(5×32^2 ))=(√(5×1024))=(√(5120))=71+r  0<r<1  and really  71^2 =(70+1)^2 =4900+1+140=5041  72^2 =(70+2)^2 =4900+4+280=5184  71^2 <5120<72^2 ⇒71<(√(5120))<72  ⇒143<72+32(√5)<144  ⇒Ans. 143
$$\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{\mathrm{3}} =\mathrm{3}^{\mathrm{3}} +\mathrm{3}×\mathrm{3}^{\mathrm{2}} ×\sqrt{\mathrm{5}}+\mathrm{3}×\mathrm{3}×\mathrm{5}+\mathrm{5}\sqrt{\mathrm{5}}= \\ $$$$=\mathrm{27}+\mathrm{45}+\mathrm{32}\sqrt{\mathrm{5}}=\mathrm{72}+\mathrm{32}\sqrt{\mathrm{5}} \\ $$$$\mathrm{32}\sqrt{\mathrm{5}}=\sqrt{\mathrm{5}×\mathrm{32}^{\mathrm{2}} }=\sqrt{\mathrm{5}×\mathrm{1024}}=\sqrt{\mathrm{5120}}=\mathrm{71}+{r} \\ $$$$\mathrm{0}<{r}<\mathrm{1} \\ $$$${and}\:{really} \\ $$$$\mathrm{71}^{\mathrm{2}} =\left(\mathrm{70}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4900}+\mathrm{1}+\mathrm{140}=\mathrm{5041} \\ $$$$\mathrm{72}^{\mathrm{2}} =\left(\mathrm{70}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{4900}+\mathrm{4}+\mathrm{280}=\mathrm{5184} \\ $$$$\mathrm{71}^{\mathrm{2}} <\mathrm{5120}<\mathrm{72}^{\mathrm{2}} \Rightarrow\mathrm{71}<\sqrt{\mathrm{5120}}<\mathrm{72} \\ $$$$\Rightarrow\mathrm{143}<\mathrm{72}+\mathrm{32}\sqrt{\mathrm{5}}<\mathrm{144} \\ $$$$\Rightarrow{Ans}.\:\mathrm{143} \\ $$
Commented by Mingma last updated on 02/Jun/23
Perfect ��
Answered by Alleddawi last updated on 02/Jun/23
(3+(√5))^3 =72+32(√5)  32(√5)=(√(1024×5))=(√(5120))  5041<5120<5184  (√(5041))<(√(5120))<(√(5184))  71<(√(5120))<72  71<32(√5)<72  72+71<72+32(√5)<72+72  143<(3+(√5))^3 <144  (3+(√5))^3 ≈143
$$\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{\mathrm{3}} =\mathrm{72}+\mathrm{32}\sqrt{\mathrm{5}} \\ $$$$\mathrm{32}\sqrt{\mathrm{5}}=\sqrt{\mathrm{1024}×\mathrm{5}}=\sqrt{\mathrm{5120}} \\ $$$$\mathrm{5041}<\mathrm{5120}<\mathrm{5184} \\ $$$$\sqrt{\mathrm{5041}}<\sqrt{\mathrm{5120}}<\sqrt{\mathrm{5184}} \\ $$$$\mathrm{71}<\sqrt{\mathrm{5120}}<\mathrm{72} \\ $$$$\mathrm{71}<\mathrm{32}\sqrt{\mathrm{5}}<\mathrm{72} \\ $$$$\mathrm{72}+\mathrm{71}<\mathrm{72}+\mathrm{32}\sqrt{\mathrm{5}}<\mathrm{72}+\mathrm{72} \\ $$$$\mathrm{143}<\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{\mathrm{3}} <\mathrm{144} \\ $$$$\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)^{\mathrm{3}} \approx\mathrm{143} \\ $$
Commented by Mingma last updated on 03/Jun/23
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *