Menu Close

Question-193027




Question Number 193027 by Mingma last updated on 02/Jun/23
Answered by BaliramKumar last updated on 02/Jun/23
α = tan^(−1) (2(√2)) ?
$$\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right)\:? \\ $$
Answered by ajfour last updated on 02/Jun/23
(1+r)cos α+(r/( (√2)))=1  (1+r)sin α+(r/( (√2)))=2  tan α=((2−(r/( (√2))))/(1−(r/( (√2)))))  (1+r)^2 =(1−(r/( (√2))))^2 +(2−(r/( (√2))))^2   ⇒  2r+1=5−((6r)/( (√2)))  r=((2(√2))/(3+(√2)))  tan α=((2−(2/(3+(√2))))/(1−(2/(3+(√2)))))=((4+2(√2))/(1+(√2)))=2(√2)  α=tan^(−1) (2(√2))
$$\left(\mathrm{1}+{r}\right)\mathrm{cos}\:\alpha+\frac{{r}}{\:\sqrt{\mathrm{2}}}=\mathrm{1} \\ $$$$\left(\mathrm{1}+{r}\right)\mathrm{sin}\:\alpha+\frac{{r}}{\:\sqrt{\mathrm{2}}}=\mathrm{2} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}−\frac{{r}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}−\frac{{r}}{\:\sqrt{\mathrm{2}}}} \\ $$$$\left(\mathrm{1}+{r}\right)^{\mathrm{2}} =\left(\mathrm{1}−\frac{{r}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} +\left(\mathrm{2}−\frac{{r}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{2}{r}+\mathrm{1}=\mathrm{5}−\frac{\mathrm{6}{r}}{\:\sqrt{\mathrm{2}}} \\ $$$${r}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}+\sqrt{\mathrm{2}}} \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{2}−\frac{\mathrm{2}}{\mathrm{3}+\sqrt{\mathrm{2}}}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}+\sqrt{\mathrm{2}}}}=\frac{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\alpha=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$
Commented by Mingma last updated on 03/Jun/23
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *