Menu Close

Question-19736




Question Number 19736 by ajfour last updated on 15/Aug/17
Commented by ajfour last updated on 15/Aug/17
Q.19699   (solution)  Find r in terms of R (=100)  ∠OXY=30° .
$$\mathrm{Q}.\mathrm{19699}\:\:\:\left(\mathrm{solution}\right) \\ $$$$\mathrm{Find}\:\mathrm{r}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{R}\:\left(=\mathrm{100}\right) \\ $$$$\angle\mathrm{OXY}=\mathrm{30}°\:. \\ $$
Answered by ajfour last updated on 15/Aug/17
Let radius of circle S_2  with centre D  be R=100 (given)  Radius of biggest circle S is 2R  as it passes through O and touch  the circle S internally.  ((DY)/(XD))=sin 30°   ⇒  (R/(XD))=(1/2)  XD=2R, hence  OX=R  OC=2R−r    ....(i)  CP=MX=OXcos 30°  ⇒    CP=((R(√3))/2)     ....(ii)  OP=OM+MP=OXsin 30°+CX  ⇒   OP=(R/2)+r     ....(iii)  As  OC^2 =CP^2 +OP^2    , using (i),    (ii), and (iii) we can write    (2R−r)^2 =((3R^2 )/4)+((R/2)+r)^2   ⇒  (2R−r)^2 −((R/2)+r)^2 =((3R^2 )/4)  or   (((5R)/2))(((3R)/2)−2r)=((3R^2 )/4)        5(3R−4r)=3R        15R−20r=3R         r=((12R)/(20)) =((3R)/5)     As R=100   we get  r=60 .
$$\mathrm{Let}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{S}_{\mathrm{2}} \:\mathrm{with}\:\mathrm{centre}\:\mathrm{D} \\ $$$$\mathrm{be}\:\mathrm{R}=\mathrm{100}\:\left(\mathrm{given}\right) \\ $$$$\mathrm{Radius}\:\mathrm{of}\:\mathrm{biggest}\:\mathrm{circle}\:\mathrm{S}\:\mathrm{is}\:\mathrm{2R} \\ $$$$\mathrm{as}\:\mathrm{it}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{O}\:\mathrm{and}\:\mathrm{touch} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{S}\:\mathrm{internally}. \\ $$$$\frac{\mathrm{DY}}{\mathrm{XD}}=\mathrm{sin}\:\mathrm{30}°\:\:\:\Rightarrow\:\:\frac{\mathrm{R}}{\mathrm{XD}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{XD}=\mathrm{2R},\:\mathrm{hence}\:\:\mathrm{OX}=\mathrm{R} \\ $$$$\mathrm{OC}=\mathrm{2R}−\mathrm{r}\:\:\:\:….\left(\mathrm{i}\right) \\ $$$$\mathrm{CP}=\mathrm{MX}=\mathrm{OXcos}\:\mathrm{30}° \\ $$$$\Rightarrow\:\:\:\:\mathrm{CP}=\frac{\mathrm{R}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:\:\:….\left(\mathrm{ii}\right) \\ $$$$\mathrm{OP}=\mathrm{OM}+\mathrm{MP}=\mathrm{OXsin}\:\mathrm{30}°+\mathrm{CX} \\ $$$$\Rightarrow\:\:\:\mathrm{OP}=\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\:\:\:\:\:….\left(\mathrm{iii}\right) \\ $$$$\mathrm{As}\:\:\mathrm{OC}^{\mathrm{2}} =\mathrm{CP}^{\mathrm{2}} +\mathrm{OP}^{\mathrm{2}} \:\:\:,\:\mathrm{using}\:\left(\mathrm{i}\right), \\ $$$$\:\:\left(\mathrm{ii}\right),\:\mathrm{and}\:\left(\mathrm{iii}\right)\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$$$\:\:\left(\mathrm{2R}−\mathrm{r}\right)^{\mathrm{2}} =\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}}+\left(\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\mathrm{2R}−\mathrm{r}\right)^{\mathrm{2}} −\left(\frac{\mathrm{R}}{\mathrm{2}}+\mathrm{r}\right)^{\mathrm{2}} =\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\mathrm{or}\:\:\:\left(\frac{\mathrm{5R}}{\mathrm{2}}\right)\left(\frac{\mathrm{3R}}{\mathrm{2}}−\mathrm{2r}\right)=\frac{\mathrm{3R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\mathrm{5}\left(\mathrm{3R}−\mathrm{4r}\right)=\mathrm{3R} \\ $$$$\:\:\:\:\:\:\mathrm{15R}−\mathrm{20r}=\mathrm{3R} \\ $$$$\:\:\:\:\:\:\:\mathrm{r}=\frac{\mathrm{12R}}{\mathrm{20}}\:=\frac{\mathrm{3R}}{\mathrm{5}}\:\:\: \\ $$$$\mathrm{As}\:\mathrm{R}=\mathrm{100}\:\:\:\mathrm{we}\:\mathrm{get}\:\:\mathrm{r}=\mathrm{60}\:. \\ $$
Commented by Tinkutara last updated on 15/Aug/17
Thank you very much Sir! Thanks for  your efforts!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}!\:\mathrm{Thanks}\:\mathrm{for} \\ $$$$\mathrm{your}\:\mathrm{efforts}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *