Menu Close

Question-19875




Question Number 19875 by ajfour last updated on 16/Aug/17
Commented by ajfour last updated on 17/Aug/17
Find z_0  , (p/(p+q)) , (r/(r+s)) ; in terms of    z_1 , z_2 , z_3 , and z_4  .
$${Find}\:{z}_{\mathrm{0}} \:,\:\frac{{p}}{{p}+{q}}\:,\:\frac{{r}}{{r}+{s}}\:;\:{in}\:{terms}\:{of} \\ $$$$\:\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{and}\:{z}_{\mathrm{4}} \:. \\ $$
Answered by ajfour last updated on 17/Aug/17
let (p/(p+q))=λ   ;  (r/(r+s))=μ  .     λ(z_2 −z_1 )−μ(z_4 −z_3 )=z_3 −z_1      λ(z_2 ^� −z_1 ^� )−μ(z_4 ^� −z_3 ^� )=z_3 ^� −z_1 ^�     λ=(((z_3 −z_1 )(z_4 ^� −z_3 ^� )−(z_3 ^� −z_1 ^� )(z_4 −z_3 ))/((z_2 −z_1 )(z_4 ^� −z_3 ^� )−(z_2 ^� −z_1 ^� )(z_4 −z_3 )))  −μ=(((z_2 −z_1 )(z_3 ^� −z_1 ^� )−(z_2 ^� −z_1 ^� )(z_3 −z_1 ))/((z_2 −z_1 )(z_4 ^� −z_3 ^� )−(z_2 ^� −z_1 ^� )(z_4 −z_3 ))) .    z_0 =z_1 +λ(z_2 −z_1 )    ......
$${let}\:\frac{{p}}{{p}+{q}}=\lambda\:\:\:;\:\:\frac{{r}}{{r}+{s}}=\mu\:\:. \\ $$$$\:\:\:\lambda\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)−\mu\left({z}_{\mathrm{4}} −{z}_{\mathrm{3}} \right)={z}_{\mathrm{3}} −{z}_{\mathrm{1}} \\ $$$$\:\:\:\lambda\left(\bar {{z}}_{\mathrm{2}} −\bar {{z}}_{\mathrm{1}} \right)−\mu\left(\bar {{z}}_{\mathrm{4}} −\bar {{z}}_{\mathrm{3}} \right)=\bar {{z}}_{\mathrm{3}} −\bar {{z}}_{\mathrm{1}} \:\: \\ $$$$\lambda=\frac{\left({z}_{\mathrm{3}} −{z}_{\mathrm{1}} \right)\left(\bar {{z}}_{\mathrm{4}} −\bar {{z}}_{\mathrm{3}} \right)−\left(\bar {{z}}_{\mathrm{3}} −\bar {{z}}_{\mathrm{1}} \right)\left({z}_{\mathrm{4}} −{z}_{\mathrm{3}} \right)}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)\left(\bar {{z}}_{\mathrm{4}} −\bar {{z}}_{\mathrm{3}} \right)−\left(\bar {{z}}_{\mathrm{2}} −\bar {{z}}_{\mathrm{1}} \right)\left({z}_{\mathrm{4}} −{z}_{\mathrm{3}} \right)} \\ $$$$−\mu=\frac{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)\left(\bar {{z}}_{\mathrm{3}} −\bar {{z}}_{\mathrm{1}} \right)−\left(\bar {{z}}_{\mathrm{2}} −\bar {{z}}_{\mathrm{1}} \right)\left({z}_{\mathrm{3}} −{z}_{\mathrm{1}} \right)}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)\left(\bar {{z}}_{\mathrm{4}} −\bar {{z}}_{\mathrm{3}} \right)−\left(\bar {{z}}_{\mathrm{2}} −\bar {{z}}_{\mathrm{1}} \right)\left({z}_{\mathrm{4}} −{z}_{\mathrm{3}} \right)}\:. \\ $$$$\:\:{z}_{\mathrm{0}} ={z}_{\mathrm{1}} +\lambda\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right) \\ $$$$\:\:…… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *