Menu Close

Question-20132




Question Number 20132 by mondodotto@gmail.com last updated on 22/Aug/17
Answered by mrW1 last updated on 22/Aug/17
log x^2 =(x/(25))  x^2 =10^(x/(25))   x=±10^(x/(50))   50×(x/(50))=±10^(x/(50))   50t=±10^t  with t=(x/(50))  50t=±e^(tln 10)   50te^(−tln 10) =±1  (−tln 10)e^(−tln 10) =±((ln 10)/(50))  ⇒−tln 10=W(±((ln 10)/(50)))  ⇒t=−(1/(ln 10))W(±((ln 10)/(50)))  ⇒x=−((50)/(ln 10))W(±((ln 10)/(50)))  = { ((−((50)/(ln 10))W(((ln 10)/(50)))=−0.95698)),((−((50)/(ln 10))W(−((ln 10)/(50)))= { ((1.05952)),((100)) :})) :}
logx2=x25x2=10x25x=±10x5050×x50=±10x5050t=±10twitht=x5050t=±etln1050tetln10=±1(tln10)etln10=±ln1050tln10=W(±ln1050)t=1ln10W(±ln1050)x=50ln10W(±ln1050)={50ln10W(ln1050)=0.9569850ln10W(ln1050)={1.05952100

Leave a Reply

Your email address will not be published. Required fields are marked *