Menu Close

Question-20488




Question Number 20488 by xing last updated on 27/Aug/17
Commented by ajfour last updated on 27/Aug/17
Question is:  Given   a=−(√(99))+(√(999))+(√(9999))                   b=(√(99))−(√(999))+(√(9999))                   c=(√(99))+(√(999))−(√(9999))  Find the value of   (a^4 /((a−b)(a−c)))+(b^4 /((b−c)(b−a)))+(c^4 /((c−a)(c−b)))
Questionis:Givena=99+999+9999b=99999+9999c=99+9999999Findthevalueofa4(ab)(ac)+b4(bc)(ba)+c4(ca)(cb)
Answered by ajfour last updated on 27/Aug/17
Let a=pc ,  b=qc ; then   (a^4 /((a−b)(a−c)))+(b^4 /((b−c)(b−a)))+(c^4 /((c−a)(c−b)))  =((p^4 c^4 )/(c^2 (p−q)(p−1)))+((q^4 c^4 )/(c^2 (q−1)(q−p)))                                      +(c^4 /(c^2 (1−p)(1−q)))  =(c^2 /((p−q)))[(p^4 /(p−1))−(q^4 /(q−1))+((p−q)/((1−p)(1−q)))]  =(c^2 /((p−q)))[((p^4 q−p^4 −pq^4 +q^4 +p−q)/((1−p)(1−q)))]  =(c^2 /((p−q)))[((pq(p^3 −q^3 )−(p^4 −q^4 )+(p−q))/((1−p)(1−q)))]  =c^2 [((pq(p^2 +q^2 +pq)−(p^2 +q^2 )(p+q)+1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(pq−p−q)+p^2 q^2 +1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(p−1)(q−1)−p^2 −q^2 +p^2 q^2 +1)/((1−p)(1−q)))]  =c^2 [(((p^2 +q^2 )(p−1)(q−1)+(p^2 −1)(q^2 −1))/((1−p)(1−q)))]  =c^2 [p^2 +q^2 +(p+1)(q+1)]  =c^2 [p^2 +q^2 +pq+p+q+1]  =a^2 +b^2 +ab+ca+bc+c^2   =(1/2)[(a+b)^2 +(b+c)^2 +(c+a)^2 ]  =(1/2)[4×9999+4×99+4×999]  =2[9999+999+99]  =18[1111+111+11]  =18×1233)=9×2466  =22194 .   ( option A)
Leta=pc,b=qc;thena4(ab)(ac)+b4(bc)(ba)+c4(ca)(cb)=p4c4c2(pq)(p1)+q4c4c2(q1)(qp)+c4c2(1p)(1q)=c2(pq)[p4p1q4q1+pq(1p)(1q)]=c2(pq)[p4qp4pq4+q4+pq(1p)(1q)]=c2(pq)[pq(p3q3)(p4q4)+(pq)(1p)(1q)]=c2[pq(p2+q2+pq)(p2+q2)(p+q)+1(1p)(1q)]=c2[(p2+q2)(pqpq)+p2q2+1(1p)(1q)]=c2[(p2+q2)(p1)(q1)p2q2+p2q2+1(1p)(1q)]=c2[(p2+q2)(p1)(q1)+(p21)(q21)(1p)(1q)]=c2[p2+q2+(p+1)(q+1)]=c2[p2+q2+pq+p+q+1]=a2+b2+ab+ca+bc+c2=12[(a+b)2+(b+c)2+(c+a)2]=12[4×9999+4×99+4×999]=2[9999+999+99]=18[1111+111+11]=18×1233)=9×2466=22194.(optionA)

Leave a Reply

Your email address will not be published. Required fields are marked *