Question Number 20488 by xing last updated on 27/Aug/17
Commented by ajfour last updated on 27/Aug/17
$${Question}\:{is}: \\ $$$${Given}\:\:\:{a}=−\sqrt{\mathrm{99}}+\sqrt{\mathrm{999}}+\sqrt{\mathrm{9999}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{b}=\sqrt{\mathrm{99}}−\sqrt{\mathrm{999}}+\sqrt{\mathrm{9999}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}=\sqrt{\mathrm{99}}+\sqrt{\mathrm{999}}−\sqrt{\mathrm{9999}} \\ $$$${Find}\:{the}\:{value}\:{of} \\ $$$$\:\frac{{a}^{\mathrm{4}} }{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{{b}^{\mathrm{4}} }{\left({b}−{c}\right)\left({b}−{a}\right)}+\frac{{c}^{\mathrm{4}} }{\left({c}−{a}\right)\left({c}−{b}\right)} \\ $$$$ \\ $$
Answered by ajfour last updated on 27/Aug/17
$${Let}\:{a}={pc}\:,\:\:{b}={qc}\:;\:{then} \\ $$$$\:\frac{{a}^{\mathrm{4}} }{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{{b}^{\mathrm{4}} }{\left({b}−{c}\right)\left({b}−{a}\right)}+\frac{{c}^{\mathrm{4}} }{\left({c}−{a}\right)\left({c}−{b}\right)} \\ $$$$=\frac{{p}^{\mathrm{4}} {c}^{\mathrm{4}} }{{c}^{\mathrm{2}} \left({p}−{q}\right)\left({p}−\mathrm{1}\right)}+\frac{{q}^{\mathrm{4}} {c}^{\mathrm{4}} }{{c}^{\mathrm{2}} \left({q}−\mathrm{1}\right)\left({q}−{p}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{c}^{\mathrm{4}} }{{c}^{\mathrm{2}} \left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)} \\ $$$$=\frac{{c}^{\mathrm{2}} }{\left({p}−{q}\right)}\left[\frac{{p}^{\mathrm{4}} }{{p}−\mathrm{1}}−\frac{{q}^{\mathrm{4}} }{{q}−\mathrm{1}}+\frac{{p}−{q}}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$=\frac{{c}^{\mathrm{2}} }{\left({p}−{q}\right)}\left[\frac{{p}^{\mathrm{4}} {q}−{p}^{\mathrm{4}} −{pq}^{\mathrm{4}} +{q}^{\mathrm{4}} +{p}−{q}}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$=\frac{{c}^{\mathrm{2}} }{\left({p}−{q}\right)}\left[\frac{{pq}\left({p}^{\mathrm{3}} −{q}^{\mathrm{3}} \right)−\left({p}^{\mathrm{4}} −{q}^{\mathrm{4}} \right)+\left({p}−{q}\right)}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$={c}^{\mathrm{2}} \left[\frac{{pq}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{pq}\right)−\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}+{q}\right)+\mathrm{1}}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$={c}^{\mathrm{2}} \left[\frac{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({pq}−{p}−{q}\right)+{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{1}}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$={c}^{\mathrm{2}} \left[\frac{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}−\mathrm{1}\right)\left({q}−\mathrm{1}\right)−{p}^{\mathrm{2}} −{q}^{\mathrm{2}} +{p}^{\mathrm{2}} {q}^{\mathrm{2}} +\mathrm{1}}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$={c}^{\mathrm{2}} \left[\frac{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\left({p}−\mathrm{1}\right)\left({q}−\mathrm{1}\right)+\left({p}^{\mathrm{2}} −\mathrm{1}\right)\left({q}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{1}−{p}\right)\left(\mathrm{1}−{q}\right)}\right] \\ $$$$={c}^{\mathrm{2}} \left[{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\left({p}+\mathrm{1}\right)\left({q}+\mathrm{1}\right)\right] \\ $$$$={c}^{\mathrm{2}} \left[{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{pq}+{p}+{q}+\mathrm{1}\right] \\ $$$$=\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{ab}}+\boldsymbol{{ca}}+\boldsymbol{{bc}}+\boldsymbol{{c}}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} +\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} +\left(\boldsymbol{{c}}+\boldsymbol{{a}}\right)^{\mathrm{2}} \right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{4}×\mathrm{9999}+\mathrm{4}×\mathrm{99}+\mathrm{4}×\mathrm{999}\right] \\ $$$$=\mathrm{2}\left[\mathrm{9999}+\mathrm{999}+\mathrm{99}\right] \\ $$$$=\mathrm{18}\left[\mathrm{1111}+\mathrm{111}+\mathrm{11}\right] \\ $$$$\left.=\mathrm{18}×\mathrm{1233}\right)=\mathrm{9}×\mathrm{2466} \\ $$$$=\mathrm{22194}\:.\:\:\:\left(\:{option}\:{A}\right) \\ $$