Question Number 20705 by mondodotto@gmail.com last updated on 01/Sep/17
Answered by dioph last updated on 01/Sep/17
$$\mathrm{40}\:=\:\frac{\Sigma{x}_{{i}} −\left(\mathrm{43}+\mathrm{35}\right)+\left(\mathrm{34}+\mathrm{53}\right)}{\mathrm{200}} \\ $$$$\mathrm{8000}\:=\:\Sigma{x}_{{i}} \:−\:\mathrm{78}\:+\:\mathrm{87} \\ $$$$\Sigma{x}_{{i}} \:=\:\mathrm{7991} \\ $$$${m}\:=\:\frac{\Sigma{x}_{{i}} }{\mathrm{200}}\:=\:\frac{\mathrm{7991}}{\mathrm{200}} \\ $$$${m}\:=\:\mathrm{39}.\mathrm{955} \\ $$$$\mathrm{15}\:=\:\sqrt{\frac{\left[\Sigma{x}_{{i}} ^{\mathrm{2}} −\left(\mathrm{43}^{\mathrm{2}} +\mathrm{35}^{\mathrm{2}} \right)+\left(\mathrm{34}^{\mathrm{2}} +\mathrm{53}^{\mathrm{2}} \right)\right]−\left[\left(\Sigma{x}_{{i}} −\left(\mathrm{43}+\mathrm{35}\right)+\left(\mathrm{34}+\mathrm{43}\right)\right)^{\mathrm{2}} /\mathrm{200}\right]}{\mathrm{199}}} \\ $$$$\mathrm{225}\:=\:\frac{\left[\Sigma{x}_{{i}} ^{\mathrm{2}} \:+\:\mathrm{891}\right]−\left[\mathrm{8000}^{\mathrm{2}} /\mathrm{200}\right]}{\mathrm{199}} \\ $$$$\mathrm{44775}\:=\:\Sigma{x}_{{i}} ^{\mathrm{2}} \:−\:\mathrm{319109} \\ $$$$\Sigma{x}_{{i}} ^{\mathrm{2}} \:=\:\mathrm{363884} \\ $$$$\sigma\:=\:\sqrt{\frac{\Sigma{x}_{{i}} ^{\mathrm{2}} −\left(\Sigma{x}_{{i}} \right)^{\mathrm{2}} /\mathrm{200}}{\mathrm{199}}} \\ $$$$\sigma\:=\:\sqrt{\frac{\mathrm{363884}−\mathrm{7991}^{\mathrm{2}} /\mathrm{200}}{\mathrm{199}}} \\ $$$$\sigma\:\approx\:\mathrm{14}.\mathrm{971} \\ $$