Question Number 20744 by mondodotto@gmail.com last updated on 02/Sep/17
Answered by $@ty@m last updated on 02/Sep/17
$${ATQ}, \\ $$$${Let}\:{the}\:{equation}\:{of}\:{the}\:{st}.\:{line}\:{be} \\ $$$${y}={mx}+{c}\:−−\left(\mathrm{1}\right) \\ $$$${It}\:{passes}\:{through}\:\left(\mathrm{4},−\mathrm{2}\right) \\ $$$$\therefore\:−\mathrm{2}=\mathrm{4}{m}+{c} \\ $$$$\Rightarrow{c}=−\mathrm{2}−\mathrm{4}{m} \\ $$$$\therefore\:{the}\:{equation}\:{of}\:{the}\:{st}.\:{line}\:{is} \\ $$$${y}={mx}−\mathrm{4}{m}−\mathrm{2}\:−−\left(\mathrm{2}\right) \\ $$$${Put}\:{y}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{4}{m}+\mathrm{2}}{{m}} \\ $$$$\therefore\:{coordinates}\:{of}\:{R}=\left(\frac{\mathrm{4}{m}+\mathrm{2}}{{m}},\mathrm{0}\right) \\ $$$${Put}\:{x}=\mathrm{0} \\ $$$$\Rightarrow{y}=−\mathrm{4}{m}−\mathrm{2} \\ $$$$\therefore\:{coordinates}\:{of}\:{S}=\left(\mathrm{0},\:−\mathrm{4}{m}−\mathrm{2}\right) \\ $$$${T}\:{is}\:{mid}\:{point}\:{of}\:{RS} \\ $$$$\therefore\:{coordinates}\:{of}\:{T}=\left(\frac{\mathrm{1}+\mathrm{2}{m}}{\mathrm{2}},\:−\mathrm{2}{m}−\mathrm{1}\right)=\left({p},{q}\right),\:{say} \\ $$$$\Rightarrow{p}=\frac{\mathrm{1}+\mathrm{2}{m}}{\mathrm{2}},\:{q}=−\mathrm{2}{m}−\mathrm{1} \\ $$$$\Rightarrow{p}=\frac{−{q}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{p}+{q}=\mathrm{0} \\ $$$$\therefore{locus}\:{of}\:{T}\left({p},{q}\right)\:{is} \\ $$$$\mathrm{2}{x}+{y}=\mathrm{0} \\ $$$${which}\:{satisfies}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\Rightarrow\:{it}\:{passes}\:{through}\:{origin}. \\ $$
Commented by mondodotto@gmail.com last updated on 02/Sep/17
$$\mathrm{thanx}\:\mathrm{a}\:\mathrm{lot}! \\ $$
Commented by mondodotto@gmail.com last updated on 02/Sep/17
$$\mathrm{please}\:\mathrm{recheck}! \\ $$
Commented by $@ty@m last updated on 02/Sep/17
$${Is}\:{this}\:{correct}\:{now}? \\ $$