Question Number 20992 by NECx last updated on 09/Sep/17
Commented by NECx last updated on 09/Sep/17
$$\mathrm{please}\:\mathrm{help}\:\mathrm{guys} \\ $$
Answered by $@ty@m last updated on 10/Sep/17
$${Let}\:{there}\:{be}\:{x}\:{girls}. \\ $$$$\Rightarrow{no}.\:{of}\:{boys}=\frac{\mathrm{110}}{\mathrm{100}}{x} \\ $$$$\Rightarrow{no}.\:{of}\:{children},\:{i}.{e}. \\ $$$$\:\:\:\:\:\:\:\:{no}.\:{of}\:{boys}+{girls}={x}+\frac{\mathrm{110}}{\mathrm{100}}{x} \\ $$$$\:\:\:\:\: \\ $$$${Again}, \\ $$$${Let}\:{no}.\:{of}\:{men}={y} \\ $$$$\Rightarrow{no}.\:{of}\:{women}=\frac{\mathrm{115}}{\mathrm{100}}{y}\: \\ $$$$\Rightarrow{no}.\:{of}\:{adults}=\frac{\mathrm{215}}{\mathrm{100}}{y}\:\:−\left(\mathrm{2}\right) \\ $$$${ATQ} \\ $$$$\frac{\mathrm{215}}{\mathrm{100}}{y}×\frac{\mathrm{120}}{\mathrm{100}}=\frac{\mathrm{210}}{\mathrm{100}}{x} \\ $$$$\Rightarrow{x}=\frac{\mathrm{215}}{\mathrm{100}}×\frac{\mathrm{120}}{\mathrm{210}}{y} \\ $$$$\Rightarrow{x}=\frac{\mathrm{43}}{\mathrm{35}}{y}\:−−−\left(\mathrm{3}\right) \\ $$$$\therefore\:{no}.\:{of}\:{boys}=\frac{\mathrm{110}}{\mathrm{100}}{x}=\frac{\mathrm{110}}{\mathrm{100}}×\frac{\mathrm{43}}{\mathrm{35}}{y} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{473}}{\mathrm{350}}{y}\:−−\left(\mathrm{4}\right) \\ $$$${Given}, \\ $$$${population}<\mathrm{6000} \\ $$$$\frac{\mathrm{210}}{\mathrm{100}}{x}+\frac{\mathrm{215}}{\mathrm{100}}{y}<\mathrm{6000} \\ $$$$\mathrm{210}{x}+\mathrm{215}{y}<\mathrm{600000} \\ $$$$\mathrm{210}×\frac{\mathrm{43}}{\mathrm{35}}{y}+\mathrm{215}{y}<\mathrm{600000} \\ $$$$\mathrm{258}{y}+\mathrm{215}{y}<\mathrm{600000} \\ $$$$\mathrm{473}{y}<\mathrm{600000} \\ $$$${y}<\mathrm{1268}.\mathrm{5}\:−−\left(\mathrm{5}\right) \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\Rightarrow{y}\mid\mathrm{20} \\ $$$$\left(\mathrm{3}\right)\Rightarrow{y}\mid\mathrm{35} \\ $$$$\left(\mathrm{4}\right)\Rightarrow{y}\mid\mathrm{350} \\ $$$${LCM}\left(\mathrm{20},\mathrm{35},\mathrm{350}\right)=\mathrm{700} \\ $$$$\therefore\:\left(\mathrm{5}\right)\Rightarrow\:{y}=\mathrm{700} \\ $$$$\Rightarrow{no}.\:{of}\:{men}=\mathrm{700} \\ $$$$\Rightarrow{no}.\:{of}\:{women}=\frac{\mathrm{115}}{\mathrm{100}}×\mathrm{700}=\mathrm{805} \\ $$$${no}.\:{of}\:{girls}=\frac{\mathrm{43}}{\mathrm{35}}×\mathrm{700}=\mathrm{860} \\ $$$${no}.\:{of}\:{boys}=\frac{\mathrm{473}}{\mathrm{350}}×\mathrm{700}=\mathrm{946} \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{wow}…..\:\mathrm{this}\:\mathrm{is}\:\mathrm{great}\:\mathrm{sir}. \\ $$$$\mathrm{i}'\mathrm{m}\:\mathrm{most}\:\mathrm{grateful}\:\mathrm{sir}.\mathrm{Words}\:\mathrm{cant} \\ $$$$\mathrm{express}\:\mathrm{how}\:\mathrm{happy}\:\mathrm{I}\:\mathrm{am}.\:\mathrm{Thank} \\ $$$$\mathrm{you} \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{by} \\ $$$$\left(\mathrm{2}\right)\Rightarrow\mathrm{y}\mid\mathrm{20} \\ $$$$\left(\mathrm{3}\right)\Rightarrow\mathrm{y}\mid\mathrm{35} \\ $$$$\left(\mathrm{4}\right)\Rightarrow\mathrm{y}\mid\mathrm{350} \\ $$$$\mathrm{l}.\mathrm{c}.\mathrm{m}\left(\mathrm{20},\mathrm{35},\mathrm{350}\right)=\mathrm{700} \\ $$
Commented by $@ty@m last updated on 10/Sep/17
$$\because\:{y}\:{is}\:{no}.\:{of}\:{men} \\ $$$$\therefore{y}\in\mathrm{N} \\ $$$$\:{Similarly}\:{no}.\:{of}\:{adults}=\frac{\mathrm{215}}{\mathrm{100}}{y}\in\mathrm{N} \\ $$$${which}\:{is}\:{possible}\:{only}\:{if}\:{y}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{20}. \\ $$$${that}\:{is}\:{what}\:{I}\:{meant}\:{by}\: \\ $$$$\left(\mathrm{2}\right)\Rightarrow\mathrm{y}\mid\mathrm{20}\: \\ $$$${and}\:{likewise}\:{for}\:{other}\:{two}\:{expessions}. \\ $$$${Further},\:{to}\:{fulfill}\:{the}\:{three}\: \\ $$$${conditions}\:{simltaneously} \\ $$$${we}'{ll}\:{have}\:{to}\:{find}\:{the}\:{Least}\:{Common} \\ $$$${Multiple}\:\left({LCM}\right)\:{of}\:\mathrm{20},\:\mathrm{35}\:{and}\:\mathrm{350} \\ $$$${which}\:{is}\:\mathrm{700}. \\ $$$$\therefore{y}\in\left\{\mathrm{700},\:\mathrm{1400},\:……\right\} \\ $$$${but}\:{in}\:{ineqation}\left(\mathrm{5}\right),\:{we}\:{have} \\ $$$${y}<\mathrm{1268}.\mathrm{5} \\ $$$$\Rightarrow{y}=\mathrm{700} \\ $$$${Are}\:{all}\:{your}\:{doubts}\:{clear}\:{now}? \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{yeah}….\:\mathrm{i}\:\mathrm{understand}\:. \\ $$$$\mathrm{please}\:\mathrm{which}\:\mathrm{topic}\:\mathrm{in}\:\mathrm{maths}\:\mathrm{does} \\ $$$$\mathrm{this}\:\mathrm{question}\:\mathrm{come}\:\mathrm{from}? \\ $$
Commented by $@ty@m last updated on 10/Sep/17
$${HaaHaaHaa} \\ $$$${the}\:{same}\:{question}\:{I}\:{was}\:{going} \\ $$$${to}\:{ask}\:{you}…. \\ $$$${It}\:{seems}\:{to}\:{be}\:“{Applcation}\:{of}\:{ineqality}'' \\ $$$${but}\:{actually}\:{perception}\:{of}\:“{Percentage}''\:{and} \\ $$$$“{Number}\:{Theory}''\:{are}\:{also}\:{involved}. \\ $$$${More}\:{than}\:{theory},\:{it}\:{needs}\:{logic} \\ $$$${to}\:{solve}. \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{hmmmm}….\:\mathrm{i}\:\mathrm{hear}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mrW1 last updated on 10/Sep/17
$$\mathrm{C}=\mathrm{children}\:\mathrm{in}\:\% \\ $$$$\mathrm{A}=\mathrm{adult}\:\mathrm{in}\:\% \\ $$$$\mathrm{B}=\mathrm{boys}\:\mathrm{in}\:\% \\ $$$$\mathrm{G}=\mathrm{girls}\:\mathrm{in}\:\% \\ $$$$ \\ $$$$\mathrm{C}+\mathrm{A}=\mathrm{100\%}=\mathrm{1} \\ $$$$\mathrm{C}=\mathrm{1}.\mathrm{2}×\mathrm{A} \\ $$$$\Rightarrow\mathrm{C}=\frac{\mathrm{6}}{\mathrm{11}} \\ $$$$\Rightarrow\mathrm{A}=\frac{\mathrm{5}}{\mathrm{11}} \\ $$$$ \\ $$$$\mathrm{B}+\mathrm{G}=\mathrm{C}=\frac{\mathrm{6}}{\mathrm{11}} \\ $$$$\mathrm{B}=\mathrm{1}.\mathrm{1}×\mathrm{G} \\ $$$$\Rightarrow\mathrm{B}=\frac{\mathrm{22}}{\mathrm{77}} \\ $$$$\Rightarrow\mathrm{G}=\frac{\mathrm{20}}{\mathrm{77}} \\ $$$$ \\ $$$$\mathrm{W}+\mathrm{M}=\mathrm{A}=\frac{\mathrm{5}}{\mathrm{11}} \\ $$$$\mathrm{W}=\mathrm{1}.\mathrm{15}×\mathrm{M} \\ $$$$\Rightarrow\mathrm{W}=\frac{\mathrm{115}}{\mathrm{473}} \\ $$$$\Rightarrow\mathrm{M}=\frac{\mathrm{100}}{\mathrm{473}} \\ $$$$ \\ $$$$\mathrm{let}\:\mathrm{N}=\mathrm{total}\:\mathrm{population} \\ $$$$\Rightarrow\mathrm{Boys}=\frac{\mathrm{22}}{\mathrm{77}}\mathrm{N}=\mathrm{22}×\frac{\mathrm{N}}{\mathrm{77}} \\ $$$$\Rightarrow\mathrm{Girls}=\frac{\mathrm{20}}{\mathrm{77}}\mathrm{N}=\mathrm{20}×\frac{\mathrm{N}}{\mathrm{77}} \\ $$$$\Rightarrow\mathrm{Women}=\frac{\mathrm{115}}{\mathrm{473}}\mathrm{N}=\mathrm{115}×\frac{\mathrm{N}}{\mathrm{473}} \\ $$$$\Rightarrow\mathrm{Men}=\frac{\mathrm{100}}{\mathrm{473}}\mathrm{N}=\mathrm{100}×\frac{\mathrm{N}}{\mathrm{473}} \\ $$$$ \\ $$$$\mathrm{LCM}\left(\mathrm{77},\mathrm{473}\right)=\mathrm{3311} \\ $$$$\Rightarrow\mathrm{N}=\mathrm{3311k}\:\mathrm{with}\:\mathrm{k}\in\mathbb{N} \\ $$$$\Rightarrow\mathrm{Boys}=\mathrm{22}×\frac{\mathrm{3311k}}{\mathrm{77}}=\mathrm{946k} \\ $$$$\Rightarrow\mathrm{Girls}=\mathrm{20}×\frac{\mathrm{3311k}}{\mathrm{77}}=\mathrm{860k} \\ $$$$\Rightarrow\mathrm{Women}=\mathrm{115}×\frac{\mathrm{3311k}}{\mathrm{473}}=\mathrm{805k} \\ $$$$\Rightarrow\mathrm{Men}=\mathrm{100}×\frac{\mathrm{3311k}}{\mathrm{473}}=\mathrm{700k} \\ $$$$ \\ $$$$\mathrm{since}\:\mathrm{N}<\mathrm{6000},\:\Rightarrow\mathrm{k}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{946}\:\mathrm{boys},\:\mathrm{860}\:\mathrm{girls},\:\mathrm{805}\:\mathrm{women},\:\mathrm{700}\:\mathrm{men} \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{i}\:\mathrm{really}\:\mathrm{need}\:\mathrm{to}\:\mathrm{ask}\:\mathrm{this}; \\ $$$$ \\ $$$$\mathrm{why}\:\mathrm{was}\:\mathrm{it}\:\mathrm{necessary}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{LCM}\:\mathrm{of}\:\mathrm{the}\:\mathrm{denominators}? \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{always}\:\mathrm{helping}. \\ $$
Commented by mrW1 last updated on 11/Sep/17
$$\frac{\mathrm{N}}{\mathrm{77}}\:\mathrm{and}\:\frac{\mathrm{N}}{\mathrm{473}}\:\mathrm{must}\:\mathrm{be}\:\mathrm{integer},\:\mathrm{i}.\mathrm{e}. \\ $$$$\mathrm{N}\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{77}\:\mathrm{and}\:\mathrm{473}. \\ $$$$\Rightarrow\mathrm{N}=\mathrm{LCM}\left(\mathrm{77},\mathrm{473}\right)×\mathrm{k}=\mathrm{3311k} \\ $$
Answered by ajfour last updated on 10/Sep/17
$$\frac{{boy}}{{girl}}=\frac{\mathrm{11}{x}}{\mathrm{10}{x}}\:;\:\:\frac{{women}}{{men}}=\frac{\mathrm{23}{y}}{\mathrm{20}{y}} \\ $$$$\frac{{children}}{{adult}}=\frac{\mathrm{6}}{\mathrm{5}}. \\ $$$$\Rightarrow\:\:\:\:\:\frac{\mathrm{21}{x}}{\mathrm{43}{y}}=\frac{\mathrm{6}}{\mathrm{5}}\: \\ $$$$\Rightarrow\:\:\:\:\:\:\mathrm{35}{x}=\mathrm{86}{y} \\ $$$$\:{Also}\:\:\:\:\mathrm{21}{x}+\mathrm{43}{y}\:<\:\mathrm{6000} \\ $$$${or}\:\:\:\:\:\:\:\:\:\:\mathrm{42}{x}+\mathrm{35}{x}\:<\mathrm{12000} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}<\frac{\mathrm{12000}}{\mathrm{77}}\:<\mathrm{155}\frac{\mathrm{65}}{\mathrm{77}} \\ $$$${x}\:{is}\:{also}\:{a}\:{multiple}\:{of}\:\mathrm{86},\:{so} \\ $$$$\:\:{x}=\mathrm{86}\:,\:{y}=\mathrm{35} \\ $$$${no}.\:{of}\:{boys}\:=\:\mathrm{11}{x}=\mathrm{946} \\ $$$${no}.\:{of}\:{girls}\:=\:\mathrm{10}{x}=\mathrm{860} \\ $$$${no}.\:{of}\:{women}\:=\:\mathrm{23}{y}=\mathrm{805} \\ $$$${no}.\:{of}\:{men}\:=\:\mathrm{20}{y}=\mathrm{700} \\ $$$${total}\:{population}\:=\mathrm{3311}\:. \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by $@ty@m last updated on 10/Sep/17
$$\mathbb{BEST}\:\mathbb{SOLUTION} \\ $$
Commented by NECx last updated on 10/Sep/17
$$\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{really}\:\mathrm{nice}\:\mathrm{solution} \\ $$$$\mathrm{for}\:\mathrm{others}\:\mathrm{but}\:\mathrm{i}'\mathrm{m}\:\mathrm{really}\:\mathrm{confused}. \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{my}\:\mathrm{question}\:\mathrm{here}\:\mathrm{guys}\:, \\ $$$$\mathrm{35x}=\mathrm{86y}\:\:\:\:\:\:\:\:…..\mathrm{how}? \\ $$
Commented by ajfour last updated on 11/Sep/17
$${follows}\:{from}\:{line}\:{before}\:.. \\ $$
Commented by NECx last updated on 11/Sep/17
$$\mathrm{oh}…\:\mathrm{its}\:\mathrm{clear} \\ $$