Menu Close

Question-21009




Question Number 21009 by xxyy@gmail.com last updated on 10/Sep/17
Answered by Tinkutara last updated on 10/Sep/17
2cos^2  (π/(16))×2cos^2  ((3π)/(16))×2cos^2  ((5π)/(16))×2cos^2  ((7π)/(16))  =(4cos (π/(16))cos ((3π)/(16))cos ((5π)/(16))cos ((7π)/(16)))^2   =(4cos (π/(16))cos ((3π)/(16))sin ((3π)/(16))sin (π/(16)))^2   =(sin (π/8)sin ((3π)/8))^2 =(1/4)(2sin (π/8)cos (π/8))^2   =(1/4)sin^2  (π/4)=(1/8)
$$\mathrm{2cos}^{\mathrm{2}} \:\frac{\pi}{\mathrm{16}}×\mathrm{2cos}^{\mathrm{2}} \:\frac{\mathrm{3}\pi}{\mathrm{16}}×\mathrm{2cos}^{\mathrm{2}} \:\frac{\mathrm{5}\pi}{\mathrm{16}}×\mathrm{2cos}^{\mathrm{2}} \:\frac{\mathrm{7}\pi}{\mathrm{16}} \\ $$$$=\left(\mathrm{4cos}\:\frac{\pi}{\mathrm{16}}\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{16}}\mathrm{cos}\:\frac{\mathrm{5}\pi}{\mathrm{16}}\mathrm{cos}\:\frac{\mathrm{7}\pi}{\mathrm{16}}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{4cos}\:\frac{\pi}{\mathrm{16}}\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{16}}\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{16}}\mathrm{sin}\:\frac{\pi}{\mathrm{16}}\right)^{\mathrm{2}} \\ $$$$=\left(\mathrm{sin}\:\frac{\pi}{\mathrm{8}}\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{8}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2sin}\:\frac{\pi}{\mathrm{8}}\mathrm{cos}\:\frac{\pi}{\mathrm{8}}\right)^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$
Commented by xxyy@gmail.com last updated on 10/Sep/17
thank very much sir!
$$\mathrm{thank}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *