Menu Close

Question-21296




Question Number 21296 by NECx last updated on 19/Sep/17
Commented by NECx last updated on 19/Sep/17
please help me solve this. It was  solved before but i cant assess the  answer again.    please help
pleasehelpmesolvethis.Itwassolvedbeforebuticantassesstheansweragain.pleasehelp
Commented by NECx last updated on 20/Sep/17
i think then it was solved by   smalso334   .... something like that
ithinkthenitwassolvedbysmalso334.somethinglikethat
Commented by NECx last updated on 20/Sep/17
please help
pleasehelp
Answered by Joel577 last updated on 20/Sep/17
2sin^(−1) (x(√6)) + sin^(−1) (4x) = (π/2)  sin^(−1)  x(√6) = α  → sin α = x(√6)  sin^(−1)  4x = β    →  sin β = 4x    sin (2sin^(−1) x(√6) + sin^(−1)  4x) = sin (π/2)  sin (2α + β) = 1  sin 2α cos β + cos 2α sin β = 1  2sin α cos α cos β + (1 − 2sin^2  α)sin β = 1    2sin α cos α cos β = 2 . x(√6) . (√(1 − 6x^2 )) . (√(1 − 16x^2 ))                                        = 2x(√(6(1 − 6x^2 )(1 − 16x^2 )))  (1 − 2sin^2  α)sin β = (1 − 12x^2 )4x                                         = 4x − 48x^3     2x(√(6(1 − 6x^2 )(1 − 16x^2 ))) + 4x − 48x^3  = 1  4x^2 (√(576x^4  − 132x^2  + 6))  = 48x^3  − 4x + 1  4x^2 (576x^4  − 132x^2  + 6) = 2304x^6  − 384x^4  + 96x^3  + 16x^2  − 8x + 1  2304x^6  − 528x^4  + 24x^2   = 2304x^6  − 384x^4  + 96x^3  + 16x^2  − 8x + 1  144x^4  + 96x^3  − 8x^2  − 8x + 1 = 0    If we plot it into Cartecian plane, it shows  x = −(1/2) or x = (1/6)
2sin1(x6)+sin1(4x)=π2sin1x6=αsinα=x6sin14x=βsinβ=4xsin(2sin1x6+sin14x)=sinπ2sin(2α+β)=1sin2αcosβ+cos2αsinβ=12sinαcosαcosβ+(12sin2α)sinβ=12sinαcosαcosβ=2.x6.16x2.116x2=2x6(16x2)(116x2)(12sin2α)sinβ=(112x2)4x=4x48x32x6(16x2)(116x2)+4x48x3=14x2576x4132x2+6=48x34x+14x2(576x4132x2+6)=2304x6384x4+96x3+16x28x+12304x6528x4+24x2=2304x6384x4+96x3+16x28x+1144x4+96x38x28x+1=0IfweplotitintoCartecianplane,itshowsx=12orx=16
Commented by Joel577 last updated on 20/Sep/17
If someone have shorter ways to solve this,  please explain it to us. Thanks
Ifsomeonehaveshorterwaystosolvethis,pleaseexplainittous.Thanks
Commented by NECx last updated on 20/Sep/17
thanks boss
thanksboss

Leave a Reply

Your email address will not be published. Required fields are marked *