Question Number 21297 by NECx last updated on 19/Sep/17
Answered by sma3l2996 last updated on 20/Sep/17
$$\mathrm{2}{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{6}}\right)+{sin}^{−\mathrm{1}} \left(\mathrm{4}{x}\right)=\frac{\pi}{\mathrm{2}} \\ $$$${sin}^{−\mathrm{1}} \left(\mathrm{4}{x}\right)=\frac{\pi}{\mathrm{2}}−\mathrm{2}{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{6}}\right) \\ $$$${sin}\left({sin}^{−\mathrm{1}} \left(\mathrm{4}{x}\right)\right)={sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{6}}\right)\right) \\ $$$${we}\:{have}\:\:{sin}\left(\pi/\mathrm{2}−{a}\right)={cosa} \\ $$$${so}\::\:\:\mathrm{4}{x}={cos}\left(\mathrm{2}{sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{6}}\right)=\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left({sin}^{−\mathrm{1}} \left({x}\sqrt{\mathrm{6}}\right)\right)\right. \\ $$$$\mathrm{4}{x}=\mathrm{1}−\mathrm{2}×\left({x}\sqrt{\mathrm{6}}\right)^{\mathrm{2}} \Leftrightarrow\mathrm{12}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}{x}−\frac{\mathrm{1}}{\mathrm{12}}=\mathrm{0}\Leftrightarrow{x}^{\mathrm{2}} +\mathrm{2}.\frac{\mathrm{1}}{\mathrm{6}}{x}+\frac{\mathrm{1}}{\mathrm{36}}=\frac{\mathrm{1}}{\mathrm{36}}+\frac{\mathrm{1}}{\mathrm{12}}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\left({x}+\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{9}}\Leftrightarrow{x}=\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{6}}\:\:{or}\:\:{x}=\frac{−\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{6}} \\ $$$${so}\:\:{x}=\frac{\mathrm{1}}{\mathrm{6}}\:\:{or}\:\:{x}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by sma3l2996 last updated on 20/Sep/17
$${and}\:−\frac{\mathrm{1}}{\mathrm{2}}\:{it}'{s}\:{not}\:{solution},\:{because}\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{6}}>\mathrm{1}\:{or}\:\:\mathrm{4}×\frac{\mathrm{1}}{\mathrm{2}}>\mathrm{1} \\ $$$${so}\:\:{x}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by NECx last updated on 20/Sep/17
$$\mathrm{i}'\mathrm{m}\:\mathrm{most}\:\mathrm{grateful}\:\mathrm{sir}. \\ $$