Question Number 22090 by tawa tawa last updated on 10/Oct/17
Answered by Tikufly last updated on 11/Oct/17
$$\left(\mathrm{i}\right)\:\mathrm{3},\:\:\mathrm{15},\:\:\:\mathrm{75},\:\:\:\mathrm{375},……. \\ $$$$\left(\mathrm{ii}\right)\mathrm{3},\:\:\mathrm{15},\:\:\:\mathrm{27},\:\:\:\mathrm{39},……… \\ $$
Commented by tawa tawa last updated on 11/Oct/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by $@ty@m last updated on 11/Oct/17
$${ATQ} \\ $$$${t}_{\mathrm{2}} ^{\mathrm{2}} ={t}_{\mathrm{1}} .{t}_{\mathrm{7}} \\ $$$$\left({a}+{d}\right)^{\mathrm{2}} ={a}\left({a}+\mathrm{6}{d}\right) \\ $$$${a}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{2}{ad}={a}^{\mathrm{2}} +\mathrm{6}{ad} \\ $$$${d}^{\mathrm{2}} −\mathrm{4}{ad}=\mathrm{0} \\ $$$${d}\left({d}−\mathrm{4}{a}\right)=\mathrm{0} \\ $$$${d}=\mathrm{4}{a}\:\:−−\left(\mathrm{1}\right) \\ $$$${r}=\frac{{t}_{\mathrm{2}} }{{t}_{\mathrm{1}} }=\frac{{a}+{d}}{{a}}=\frac{\mathrm{5}{a}}{{a}}=\mathrm{5} \\ $$$${Let}\:{product}\:{of}\:{n}\:{terms}\:{of}\:{G}.{P}.=\mathrm{3375} \\ $$$$\Rightarrow{A}.{Ar}.{Ar}^{\mathrm{2}} ….{Ar}^{{n}−\mathrm{1}} =\mathrm{3375} \\ $$$$\Rightarrow{A}^{{n}} .{r}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} =\mathrm{3375} \\ $$$$\Rightarrow{A}^{{n}} .\mathrm{5}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} =\mathrm{3}^{\mathrm{3}} \mathrm{5}^{\mathrm{3}} \\ $$$$\Rightarrow{n}=\mathrm{3},\:{A}=\mathrm{3} \\ $$$$\therefore\:{the}\:{Geometric}\:{series}\:{is} \\ $$$$\mathrm{3}+\mathrm{15}+\mathrm{75}\:\:{Ans}.\left({i}\right) \\ $$$${Now},\:{t}_{\mathrm{2}} ={a}+{d} \\ $$$$\Rightarrow{Ar}={a}+\mathrm{4}{a} \\ $$$$\Rightarrow\mathrm{15}=\mathrm{5}{a} \\ $$$$\Rightarrow{a}=\mathrm{3}\:\&{d}=\mathrm{12} \\ $$$$\therefore\:{using}\:{formula}\:{S}_{{n}} =\frac{{n}}{\mathrm{2}}\left\{\mathrm{2}{a}+\left({n}−\mathrm{1}\right){d}\right\} \\ $$$${S}_{{n}} =\frac{{n}}{\mathrm{2}}\left\{\mathrm{6}+\left({n}−\mathrm{1}\right).\mathrm{12}\right\} \\ $$$$\:{S}_{{n}} =\frac{{n}}{\mathrm{2}}\left(\mathrm{12}{n}−\mathrm{6}\right)\:{Ans}.\left({ii}\right) \\ $$$$ \\ $$
Commented by tawa tawa last updated on 11/Oct/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$