Menu Close

Question-22090




Question Number 22090 by tawa tawa last updated on 10/Oct/17
Answered by Tikufly last updated on 11/Oct/17
(i) 3,  15,   75,   375,.......  (ii)3,  15,   27,   39,.........
$$\left(\mathrm{i}\right)\:\mathrm{3},\:\:\mathrm{15},\:\:\:\mathrm{75},\:\:\:\mathrm{375},……. \\ $$$$\left(\mathrm{ii}\right)\mathrm{3},\:\:\mathrm{15},\:\:\:\mathrm{27},\:\:\:\mathrm{39},……… \\ $$
Commented by tawa tawa last updated on 11/Oct/17
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by $@ty@m last updated on 11/Oct/17
ATQ  t_2 ^2 =t_1 .t_7   (a+d)^2 =a(a+6d)  a^2 +d^2 +2ad=a^2 +6ad  d^2 −4ad=0  d(d−4a)=0  d=4a  −−(1)  r=(t_2 /t_1 )=((a+d)/a)=((5a)/a)=5  Let product of n terms of G.P.=3375  ⇒A.Ar.Ar^2 ....Ar^(n−1) =3375  ⇒A^n .r^((n(n−1))/2) =3375  ⇒A^n .5^((n(n−1))/2) =3^3 5^3   ⇒n=3, A=3  ∴ the Geometric series is  3+15+75  Ans.(i)  Now, t_2 =a+d  ⇒Ar=a+4a  ⇒15=5a  ⇒a=3 &d=12  ∴ using formula S_n =(n/2){2a+(n−1)d}  S_n =(n/2){6+(n−1).12}   S_n =(n/2)(12n−6) Ans.(ii)
$${ATQ} \\ $$$${t}_{\mathrm{2}} ^{\mathrm{2}} ={t}_{\mathrm{1}} .{t}_{\mathrm{7}} \\ $$$$\left({a}+{d}\right)^{\mathrm{2}} ={a}\left({a}+\mathrm{6}{d}\right) \\ $$$${a}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{2}{ad}={a}^{\mathrm{2}} +\mathrm{6}{ad} \\ $$$${d}^{\mathrm{2}} −\mathrm{4}{ad}=\mathrm{0} \\ $$$${d}\left({d}−\mathrm{4}{a}\right)=\mathrm{0} \\ $$$${d}=\mathrm{4}{a}\:\:−−\left(\mathrm{1}\right) \\ $$$${r}=\frac{{t}_{\mathrm{2}} }{{t}_{\mathrm{1}} }=\frac{{a}+{d}}{{a}}=\frac{\mathrm{5}{a}}{{a}}=\mathrm{5} \\ $$$${Let}\:{product}\:{of}\:{n}\:{terms}\:{of}\:{G}.{P}.=\mathrm{3375} \\ $$$$\Rightarrow{A}.{Ar}.{Ar}^{\mathrm{2}} ….{Ar}^{{n}−\mathrm{1}} =\mathrm{3375} \\ $$$$\Rightarrow{A}^{{n}} .{r}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} =\mathrm{3375} \\ $$$$\Rightarrow{A}^{{n}} .\mathrm{5}^{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}} =\mathrm{3}^{\mathrm{3}} \mathrm{5}^{\mathrm{3}} \\ $$$$\Rightarrow{n}=\mathrm{3},\:{A}=\mathrm{3} \\ $$$$\therefore\:{the}\:{Geometric}\:{series}\:{is} \\ $$$$\mathrm{3}+\mathrm{15}+\mathrm{75}\:\:{Ans}.\left({i}\right) \\ $$$${Now},\:{t}_{\mathrm{2}} ={a}+{d} \\ $$$$\Rightarrow{Ar}={a}+\mathrm{4}{a} \\ $$$$\Rightarrow\mathrm{15}=\mathrm{5}{a} \\ $$$$\Rightarrow{a}=\mathrm{3}\:\&{d}=\mathrm{12} \\ $$$$\therefore\:{using}\:{formula}\:{S}_{{n}} =\frac{{n}}{\mathrm{2}}\left\{\mathrm{2}{a}+\left({n}−\mathrm{1}\right){d}\right\} \\ $$$${S}_{{n}} =\frac{{n}}{\mathrm{2}}\left\{\mathrm{6}+\left({n}−\mathrm{1}\right).\mathrm{12}\right\} \\ $$$$\:{S}_{{n}} =\frac{{n}}{\mathrm{2}}\left(\mathrm{12}{n}−\mathrm{6}\right)\:{Ans}.\left({ii}\right) \\ $$$$ \\ $$
Commented by tawa tawa last updated on 11/Oct/17
God bless you sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *