Menu Close

Question-22525




Question Number 22525 by ajfour last updated on 19/Oct/17
Commented by ajfour last updated on 19/Oct/17
A hemisphere is inscribed in a  regular tetrahedron ,of edge a ,  such that three faces of tetrahedron  are tangent to its spherical  surface, and the fourth serves  as a plane of the diameter.  Determine the total surface  area of the hemisphere.
$${A}\:{hemisphere}\:{is}\:{inscribed}\:{in}\:{a} \\ $$$${regular}\:{tetrahedron}\:,{of}\:{edge}\:\boldsymbol{{a}}\:, \\ $$$${such}\:{that}\:{three}\:{faces}\:{of}\:{tetrahedron} \\ $$$${are}\:{tangent}\:{to}\:{its}\:{spherical} \\ $$$${surface},\:{and}\:{the}\:{fourth}\:{serves} \\ $$$${as}\:{a}\:{plane}\:{of}\:{the}\:{diameter}. \\ $$$$\boldsymbol{{D}}{etermine}\:{the}\:{total}\:{surface} \\ $$$${area}\:{of}\:{the}\:{hemisphere}. \\ $$
Commented by mrW1 last updated on 19/Oct/17
Commented by mrW1 last updated on 19/Oct/17
AB=AC=((√3)/2)a  AO=(1/3)AB=((√3)/6)a  OC=(√(AC^2 −AO^2 ))=(√((3/4)−(1/(12)))) a=((√6)/3) a  (R/(AO))=((OC)/(AC))  ⇒R=AO×((OC)/(AC))=((√3)/6) a×((√6)/3)×(2/( (√3)))=((√6)/9) a  Area=2πR^2 =((12πa^2 )/(81))
$$\mathrm{AB}=\mathrm{AC}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{a} \\ $$$$\mathrm{AO}=\frac{\mathrm{1}}{\mathrm{3}}\mathrm{AB}=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\mathrm{a} \\ $$$$\mathrm{OC}=\sqrt{\mathrm{AC}^{\mathrm{2}} −\mathrm{AO}^{\mathrm{2}} }=\sqrt{\frac{\mathrm{3}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{12}}}\:\mathrm{a}=\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}\:\mathrm{a} \\ $$$$\frac{\mathrm{R}}{\mathrm{AO}}=\frac{\mathrm{OC}}{\mathrm{AC}} \\ $$$$\Rightarrow\mathrm{R}=\mathrm{AO}×\frac{\mathrm{OC}}{\mathrm{AC}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\:\mathrm{a}×\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{6}}}{\mathrm{9}}\:\mathrm{a} \\ $$$$\mathrm{Area}=\mathrm{2}\pi\mathrm{R}^{\mathrm{2}} =\frac{\mathrm{12}\pi\mathrm{a}^{\mathrm{2}} }{\mathrm{81}} \\ $$
Commented by ajfour last updated on 20/Oct/17
 Thanks for the better view sir.
$$\:{Thanks}\:{for}\:{the}\:{better}\:{view}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *