Menu Close

Question-23223




Question Number 23223 by abwayh last updated on 27/Oct/17
Answered by mrW1 last updated on 27/Oct/17
⇒((ln a)/(ln x))+((ln a)/(ln y))=4×((ln a)/(ln (xy)))  ⇒(1/(ln x))+(1/(ln y))=(4/(ln (xy)))  ⇒((ln x+ln y)/((ln x)(ln y)))=(4/(ln x+ln y))  ⇒(ln x+ln y)^2 =4(ln x)(ln y)  ⇒(ln x−ln y)^2 =0  ⇒ln x=ln y  ⇒x=y
$$\Rightarrow\frac{\mathrm{ln}\:\mathrm{a}}{\mathrm{ln}\:\mathrm{x}}+\frac{\mathrm{ln}\:\mathrm{a}}{\mathrm{ln}\:\mathrm{y}}=\mathrm{4}×\frac{\mathrm{ln}\:\mathrm{a}}{\mathrm{ln}\:\left(\mathrm{xy}\right)} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{y}}=\frac{\mathrm{4}}{\mathrm{ln}\:\left(\mathrm{xy}\right)} \\ $$$$\Rightarrow\frac{\mathrm{ln}\:\mathrm{x}+\mathrm{ln}\:\mathrm{y}}{\left(\mathrm{ln}\:\mathrm{x}\right)\left(\mathrm{ln}\:\mathrm{y}\right)}=\frac{\mathrm{4}}{\mathrm{ln}\:\mathrm{x}+\mathrm{ln}\:\mathrm{y}} \\ $$$$\Rightarrow\left(\mathrm{ln}\:\mathrm{x}+\mathrm{ln}\:\mathrm{y}\right)^{\mathrm{2}} =\mathrm{4}\left(\mathrm{ln}\:\mathrm{x}\right)\left(\mathrm{ln}\:\mathrm{y}\right) \\ $$$$\Rightarrow\left(\mathrm{ln}\:\mathrm{x}−\mathrm{ln}\:\mathrm{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{ln}\:\mathrm{x}=\mathrm{ln}\:\mathrm{y} \\ $$$$\Rightarrow\mathrm{x}=\mathrm{y} \\ $$
Commented by abwayh last updated on 28/Oct/17
thank you very much,sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much},\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *