Question Number 23226 by ajfour last updated on 27/Oct/17
Commented by ajfour last updated on 27/Oct/17
$${Q}.\mathrm{23212}\:\:\left({solution}\right) \\ $$
Commented by math solver last updated on 28/Oct/17
$$\mathrm{sir}\:\mathrm{how}\:\mathrm{you}\:\mathrm{write}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{75}\:,\:\mathrm{60}. \\ $$$$\mathrm{ahh},\:\mathrm{i}\:\mathrm{forgot}\:':\left(\right. \\ $$
Commented by ajfour last updated on 28/Oct/17
$${AB}\:{is}\:\bot\:{to}\:{x}\:{axis} \\ $$$$\angle{DAF}=\mathrm{60}°\:\:,\:\: \\ $$$$\angle{FAx}\:=\angle{DAx}−\angle{DAF} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{90}°−\mathrm{60}°\:=\mathrm{30}° \\ $$$$\angle{BAF}=\mathrm{2}\angle{DAF}=\mathrm{120}° \\ $$$$\angle{BAx}=\angle{BAF}+\angle{FAx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{120}°+\mathrm{30}°=\mathrm{150}° \\ $$$$\angle{RAx}=\angle{BAx}−\angle{BAR} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{150}°−\mathrm{90}°=\mathrm{60}° \\ $$$$\angle{PAF}=\mathrm{45}°\:\:\:\left({angle}\:{b}/{w}\:\:{diagonal}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:{square}\:{and}\:{its}\:{side}\right) \\ $$$$\angle{PAx}=\angle{PAF}+\angle{FAx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{45}°+\mathrm{30}°\:=\:\mathrm{75}°\:\:. \\ $$
Commented by math solver last updated on 28/Oct/17
$$\left.\mathrm{alright}\:,\:\mathrm{thanks}\::\right) \\ $$
Answered by ajfour last updated on 27/Oct/17
$${Let}\:{A}\:{be}\:{the}\:{origin}. \\ $$$${AB}=\mathrm{1}\:\:{so}\:{AP}\:=\sqrt{\mathrm{2}}\:\:\left({diagonal}\:{of}\:{sq}\right) \\ $$$${AR}={AB}=\mathrm{1} \\ $$$${x}_{{P}} =\sqrt{\mathrm{2}}\mathrm{cos}\:\mathrm{75}°\:\:;\:\:{y}_{{P}} =\sqrt{\mathrm{2}}\mathrm{sin}\:\mathrm{75}° \\ $$$${x}_{{R}} =\mathrm{cos}\:\mathrm{60}°\:;\:\:{y}_{{R}} =\mathrm{sin}\:\mathrm{60}° \\ $$$$\:\bigtriangleup_{{APQ}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{x}_{{P}} ×{y}_{{P}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2cos}\:\mathrm{75}°×\mathrm{sin}\:\mathrm{75}° \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{sin}\:\mathrm{150}°\:\:=\:\mathrm{sin}\:\mathrm{30}°\:=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\bigtriangleup_{{SRP}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}{x}_{{R}} ×\left({y}_{{P}} −{y}_{{R}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{cos}\:\mathrm{60}°×\left(\sqrt{\mathrm{2}}\mathrm{sin}\:\mathrm{75}°−\mathrm{sin}\:\mathrm{60}°\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\mathrm{2}}×\frac{\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)}{\mathrm{2}\sqrt{\mathrm{2}}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${So},\:\:\:\:\:\:\frac{\bigtriangleup_{{APQ}} }{\bigtriangleup_{{SRP}} }\:=\frac{\left(\mathrm{1}/\mathrm{2}\right)}{\left(\mathrm{1}/\mathrm{4}\right)}\:=\mathrm{2}\:. \\ $$
Commented by math solver last updated on 27/Oct/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}\:! \\ $$