Menu Close

Question-23472




Question Number 23472 by ajfour last updated on 31/Oct/17
Commented by ajfour last updated on 31/Oct/17
Q.23390 (continued..)
Q.23390(continued..)
Answered by ajfour last updated on 31/Oct/17
 Applying ΣF_x =Σma_x from the  ground frame:    f=(M+m)(αR)+((m(αR)cos θ)/2)                          −mω^2 ((R/2))sin θ   ...(i)  Applying Στ = I_(net) α from the  frame of centre of ring:  ((mgRsin θ)/2)−fR−(mαR)((R/2)cos θ)                =(MR^2 +((mR^2 )/3))α   ...(ii)  eliminating f from (i) and (ii):  ((mgsin θ)/2)−(M+m)(αR)  −((m(αR)cos θ)/2)+((mω^2 Rsin θ)/2)      −((m(αR)cos θ)/2) =(M+(m/3))(αR)  ⇒ (αR)[M+(m/3)+M+m+mcos θ]               =((msin θ)/2)(ω^2 R+g)  ⇒  α=((m(ω^2 +g/R)sin θ)/(2[2M+((4m)/3)+mcos θ]))  ⇒  ((ωdω)/dθ) =((m(ω^2 +(g/R))sin θ)/(2[2M+((4m)/3)+mcos θ]))  ∫_0 ^(  ω) ((2ωdω)/(ω^2 +(g/R))) = ∫_0 ^(  θ) ((msin θ)/(2M+((4m)/3)+mcos θ))   ln (((ω^2 +(g/R))/(g/R)))=ln (((2M+((4m)/3)+m)/(2M+((4m)/3)+mcos θ)))  ((ω^2 R)/g)+1 =1−((m(1−cos θ))/(2M+((4m)/3)+mcos θ))      𝛚^2  =(g/R)(((1−cos 𝛉)/(((2M)/m)+(4/3)+cos 𝛉)))  And   𝛂 =(1/2)((d(𝛚^2 ))/d𝛉) .  To obtain the time for the return,  ⇒ 𝛚= (d𝛉/dt)=(√(g/R))[((1−cos θ)/(b^2 +cos θ))]^(1/2)   ⇒ T =4(√(R/g))∫_0 ^(  π)   [((b^2 +cos θ)/(1−cos θ))]^(1/2) dθ      where b^2 =((2M)/m)+(4/3) .     .... might continue ...
ApplyingΣFx=Σmaxfromthegroundframe:f=(M+m)(αR)+m(αR)cosθ2mω2(R2)sinθ(i)ApplyingΣτ=Inetαfromtheframeofcentreofring:mgRsinθ2fR(mαR)(R2cosθ)=(MR2+mR23)α(ii)eliminatingffrom(i)and(ii):mgsinθ2(M+m)(αR)m(αR)cosθ2+mω2Rsinθ2m(αR)cosθ2=(M+m3)(αR)(αR)[M+m3+M+m+mcosθ]=msinθ2(ω2R+g)α=m(ω2+g/R)sinθ2[2M+4m3+mcosθ]ωdωdθ=m(ω2+gR)sinθ2[2M+4m3+mcosθ]0ω2ωdωω2+gR=0θmsinθ2M+4m3+mcosθln(ω2+gRgR)=ln(2M+4m3+m2M+4m3+mcosθ)ω2Rg+1=1m(1cosθ)2M+4m3+mcosθω2=gR(1cosθ2Mm+43+cosθ)Andα=12d(ω2)dθ.Toobtainthetimeforthereturn,ω=dθdt=gR[1cosθb2+cosθ]1/2T=4Rg0π[b2+cosθ1cosθ]1/2dθwhereb2=2Mm+43..mightcontinue
Commented by mrW1 last updated on 31/Oct/17
how is it to explain, that the time   from θ=0 is not convergent?
howisittoexplain,thatthetimefromθ=0isnotconvergent?

Leave a Reply

Your email address will not be published. Required fields are marked *