Menu Close

Question-23537




Question Number 23537 by math solver last updated on 01/Nov/17
Commented by math solver last updated on 01/Nov/17
q.7 ?
q.7?
Commented by ajfour last updated on 01/Nov/17
yes 24 , a=2, h=2  i have nearly solved, but some  proof is still wanting..
yes24,a=2,h=2ihavenearlysolved,butsomeproofisstillwanting..
Commented by math solver last updated on 01/Nov/17
sir it is not even in options !
siritisnoteveninoptions!
Commented by math solver last updated on 01/Nov/17
the answer is 24.  but i don′t know how ?
theansweris24.butidontknowhow?
Commented by math solver last updated on 01/Nov/17
did you get the required proof?
didyougettherequiredproof?
Commented by Rasheed.Sindhi last updated on 02/Nov/17
2a^2 +4ah=8a+4h  a^2 +2ah−4a=2h  a(a+2h−4)=2h  ((2h)/a)=a+2h−4  ((2h)/a)∈Z  a∣2   or   a∣h  a∣2⇒a=1,2  For a=1       2a^2 +4ah=8a+4h       ⇒2+4h=8+4h (impossible)       ⇒a=2      2a^2 +4ah=8a+4h        8+8h=16+4h⇒h=2  One solution is a=h=2  Hence sum of edges=24  For a∣h     Let h=ka for some integer k.      2a^2 +4ah=8a+4h      ⇒2a^2 +4a.ka=8a+4.ka      ⇒2a^2 +4ka^2 =8a+4ka      ⇒a+2ka=4+2k      ⇒2k(a−1)=4−a         ((4−a)/(2(a−1))) =k    k=1⇒4−a=2a−2⇒a=2    Again a=h=2 and sum of edges=24    k=2⇒4−a=4(a−1)⇒a=(8/5) ∉N     Continue
2a2+4ah=8a+4ha2+2ah4a=2ha(a+2h4)=2h2ha=a+2h42haZa2oraha2a=1,2Fora=12a2+4ah=8a+4h2+4h=8+4h(impossible)a=22a2+4ah=8a+4h8+8h=16+4hh=2Onesolutionisa=h=2Hencesumofedges=24ForahLeth=kaforsomeintegerk.2a2+4ah=8a+4h2a2+4a.ka=8a+4.ka2a2+4ka2=8a+4kaa+2ka=4+2k2k(a1)=4a4a2(a1)=kk=14a=2a2a=2Againa=h=2andsumofedges=24k=24a=4(a1)a=85NContinue
Commented by ajfour last updated on 01/Nov/17
yes, just now.
yes,justnow.
Commented by math solver last updated on 01/Nov/17
from here how you get a=h=2
fromherehowyougeta=h=2
Answered by ajfour last updated on 01/Nov/17
let the square base of cuboid be  of edge length x. Let the height  be y. Then,  sum of the length  of edges = 4x+4y+4x  and area of all the faces is   =x^2 +4xy+x^2   Given they are numerixally  equal ⇒         2x^2 +4xy = 8x+4y  or   x^2 +2xy = 4x+2y         x^2 −4x+4 − 2y+2xy= 4        (x−2)^2  +2y(x−1)=4  ⇒ (x−2)^2 +2y(x−2)+y^2 =4−2y+y^2    (x−2+y)^2 = (y−1)^2 +3  ⇒  (x−2+y)^2 −(y−1)^2 =3  (x−2+y+y−1)(x−2+y−y+1)=3  (x+2y−3)(x−1)=3×1 =1×3  As x, y are positive integers,  ⇒ both       x−1=1  and               x+2y−3=3   So         x=2  and   y=2      Sum of length of edges =24 .  otherwise if   x−1=3 ⇒ x=4  and  x+2y−3 = 1  with x=4  yields  y=0 ; this is true even  but not a proper cuboid.
letthesquarebaseofcuboidbeofedgelengthx.Lettheheightbey.Then,sumofthelengthofedges=4x+4y+4xandareaofallthefacesis=x2+4xy+x2Giventheyarenumerixallyequal2x2+4xy=8x+4yorx2+2xy=4x+2yx24x+42y+2xy=4(x2)2+2y(x1)=4(x2)2+2y(x2)+y2=42y+y2(x2+y)2=(y1)2+3(x2+y)2(y1)2=3(x2+y+y1)(x2+yy+1)=3(x+2y3)(x1)=3×1=1×3Asx,yarepositiveintegers,bothx1=1andx+2y3=3Sox=2andy=2Sumoflengthofedges=24.otherwiseifx1=3x=4andx+2y3=1withx=4yieldsy=0;thisistrueevenbutnotapropercuboid.

Leave a Reply

Your email address will not be published. Required fields are marked *