Menu Close

Question-24125




Question Number 24125 by math solver last updated on 12/Nov/17
Commented by math solver last updated on 12/Nov/17
ques.2?
$$\mathrm{ques}.\mathrm{2}? \\ $$
Answered by ajfour last updated on 12/Nov/17
(a)→Q  (b)→P  (c)→R  (d)→S      Are they correct ?
$$\left({a}\right)\rightarrow{Q} \\ $$$$\left({b}\right)\rightarrow{P} \\ $$$$\left({c}\right)\rightarrow{R} \\ $$$$\left({d}\right)\rightarrow{S}\:\:\:\: \\ $$$${Are}\:{they}\:{correct}\:? \\ $$
Commented by ajfour last updated on 13/Nov/17
Commented by math solver last updated on 12/Nov/17
yes sir! plz provide sol....
$$\mathrm{yes}\:\mathrm{sir}!\:\mathrm{plz}\:\mathrm{provide}\:\mathrm{sol}…. \\ $$
Commented by ajfour last updated on 13/Nov/17
As time grows, F grows.  First friction f_2  rises in value  till its maximum (=μmg=2N);  ⇒ 20t=2   or  t=(1/(10))s  Tension develops from now,  block B starts accelerating only  after f_1  reaches its maximum.  when f_1  has just reached its  maximum, we have  Block A is not started accelerating,  so  2T = f_1 =2N   ⇒ 3T =3N  and so      F=20t −f_2 −3T =0  ⇒   t =(1/4) s .  Motion develops  from now on and we have       2a_A  = 3a_B       20t−3T−μmg = ma_B        2T−μmg = ma_A   ⇒  40t−5μmg = m((4/3)+3)a_A   So at t=1s       a_A = ((90)/(13)) m/s^2  .
$${As}\:{time}\:{grows},\:{F}\:{grows}. \\ $$$${First}\:{friction}\:\boldsymbol{{f}}_{\mathrm{2}} \:{rises}\:{in}\:{value} \\ $$$${till}\:{its}\:{maximum}\:\left(=\mu{mg}=\mathrm{2}{N}\right); \\ $$$$\Rightarrow\:\mathrm{20}{t}=\mathrm{2}\:\:\:{or}\:\:\boldsymbol{{t}}=\frac{\mathrm{1}}{\mathrm{10}}\boldsymbol{{s}} \\ $$$$\boldsymbol{{T}}{ension}\:{develops}\:{from}\:{now}, \\ $$$${block}\:{B}\:{starts}\:{accelerating}\:{only} \\ $$$${after}\:\boldsymbol{{f}}_{\mathrm{1}} \:{reaches}\:{its}\:{maximum}. \\ $$$${when}\:\boldsymbol{{f}}_{\mathrm{1}} \:{has}\:{just}\:{reached}\:{its} \\ $$$${maximum},\:{we}\:{have} \\ $$$${Block}\:{A}\:{is}\:{not}\:{started}\:{accelerating}, \\ $$$${so}\:\:\mathrm{2}{T}\:=\:{f}_{\mathrm{1}} =\mathrm{2}{N}\: \\ $$$$\Rightarrow\:\mathrm{3}{T}\:=\mathrm{3}{N}\:\:{and}\:{so} \\ $$$$\:\:\:\:{F}=\mathrm{20}{t}\:−{f}_{\mathrm{2}} −\mathrm{3}{T}\:=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{t}\:=\frac{\mathrm{1}}{\mathrm{4}}\:{s}\:.\:\:{Motion}\:{develops} \\ $$$${from}\:{now}\:{on}\:{and}\:{we}\:{have} \\ $$$$\:\:\:\:\:\mathrm{2}{a}_{{A}} \:=\:\mathrm{3}{a}_{{B}} \\ $$$$\:\:\:\:\mathrm{20}{t}−\mathrm{3}{T}−\mu{mg}\:=\:{ma}_{{B}} \\ $$$$\:\:\:\:\:\mathrm{2}{T}−\mu{mg}\:=\:{ma}_{{A}} \\ $$$$\Rightarrow\:\:\mathrm{40}{t}−\mathrm{5}\mu{mg}\:=\:{m}\left(\frac{\mathrm{4}}{\mathrm{3}}+\mathrm{3}\right){a}_{{A}} \\ $$$${So}\:{at}\:{t}=\mathrm{1}{s} \\ $$$$\:\:\:\:\:{a}_{{A}} =\:\frac{\mathrm{90}}{\mathrm{13}}\:{m}/{s}^{\mathrm{2}} \:. \\ $$
Commented by math solver last updated on 13/Nov/17
god bless you sir.
$$\mathrm{god}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *