Question Number 24127 by math solver last updated on 12/Nov/17
Commented by math solver last updated on 12/Nov/17
$$\mathrm{ques}.\mathrm{2}? \\ $$
Answered by Physics lover last updated on 13/Nov/17
$${slipping}\:{takes}\:{place}\:{at}\:{t}={T} \\ $$$${solving}\:{for}\:{T}\:: \\ $$$${a}_{{max}\:{of}\:\mathrm{4}{kg}} \:=\:\frac{\mathrm{0}.\mathrm{6}}{\mathrm{4}}\left\{\mathrm{20}\:−\:\mathrm{2}{t}\:{Sin}\:\mathrm{37}°\right\} \\ $$$$\Rightarrow\:{a}_{{max}} \:=\:\frac{\mathrm{3}}{\mathrm{50}}\:\left\{\mathrm{50}\:−\mathrm{3}{t}\right\} \\ $$$${during}\:{slipping} \\ $$$$\:\:{a}>\:{a}_{{max}} \\ $$$$\:\:\frac{\mathrm{2}{T}\:\centerdot\:\frac{\mathrm{4}}{\mathrm{5}}}{\mathrm{6}}\:\:>\:\frac{\mathrm{3}}{\mathrm{50}}\left\{\mathrm{50}−\mathrm{3}{T}\right\} \\ $$$$\Rightarrow\:\:{T}\:>\:\mathrm{6}.\mathrm{7164}\:{s} \\ $$$${until}\:{that}\:{no}\:{relative}\:{slipping} \\ $$$${takes}\:{place}. \\ $$$${now}\:{at}\:{t}=\mathrm{3}{s} \\ $$$${a}_{{system}\:} =\:\:\frac{\mathrm{6}\:\centerdot\:\frac{\mathrm{4}}{\mathrm{5}}}{\mathrm{6}}\:=\:\frac{\mathrm{4}}{\mathrm{5}}{m}/{s}^{\mathrm{2}} \\ $$$$\:\left(\mathrm{4}{kg}\right)\left(\frac{\mathrm{4}}{\mathrm{5}}\:{m}/{s}^{\mathrm{2}} \right)\:=\:{f}_{{friction}} \\ $$$$\Rightarrow\:\:{F}_{{friction}\:} =\:\frac{\mathrm{16}}{\mathrm{5}}\:{N}\:\: \\ $$$$\Rightarrow\:{a}\:{is}\:{correct}. \\ $$$$ \\ $$$${note}\::\:{g}\:{was}\:{taken}\:{to}\:{be}\:\mathrm{10}\:{m}/{s}^{\mathrm{2}} \\ $$$$ \\ $$
Commented by math solver last updated on 13/Nov/17
$$\left.\mathrm{correct}\:\mathrm{bro}\:!:\right) \\ $$
Commented by Physics lover last updated on 13/Nov/17
$${if}\:{you}\:{do}\:{it}\:{this}\:{way}\:,\:{you}\:{will}\:{not} \\ $$$${have}\:{to}\:{memorize}\:{the}\:{formula}. \\ $$
Commented by Physics lover last updated on 13/Nov/17
$${can}\:{you}\:{try}\:{Q}\:\mathrm{24144},\:{its}\:{an}\:{easy} \\ $$$${one}. \\ $$
Commented by math solver last updated on 13/Nov/17
$$\mathrm{ok}\:\mathrm{i}\:\mathrm{will}\:\mathrm{try}.. \\ $$