Menu Close

Question-24379




Question Number 24379 by j.masanja06@gmail.com last updated on 16/Nov/17
Answered by mrW1 last updated on 17/Nov/17
x^2 +y^2 −4x+8y+20=0  (x−2)^2 −4+(y+4)^2 −16+20=0  (x−2)^2 +(y+4)^2 =0  ⇒the circle is in fact a point at (2,−4)    please check your question, sir.
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{8}{y}+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}+\left({y}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{16}+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{the}\:{circle}\:{is}\:{in}\:{fact}\:{a}\:{point}\:{at}\:\left(\mathrm{2},−\mathrm{4}\right) \\ $$$$ \\ $$$${please}\:{check}\:{your}\:{question},\:{sir}. \\ $$
Answered by $@ty@m last updated on 17/Nov/17
The given circle:  (x−2)^2 +(y+4)^2 =0  ⇒ it is the point (−2,4)  ∴ Equation of tangent  y−4=((−3−4)/(5+2))(x+2)  y−4=−(x+2)  x+y=2
$${The}\:{given}\:{circle}: \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{it}\:{is}\:{the}\:{point}\:\left(−\mathrm{2},\mathrm{4}\right) \\ $$$$\therefore\:{Equation}\:{of}\:{tangent} \\ $$$${y}−\mathrm{4}=\frac{−\mathrm{3}−\mathrm{4}}{\mathrm{5}+\mathrm{2}}\left({x}+\mathrm{2}\right) \\ $$$${y}−\mathrm{4}=−\left({x}+\mathrm{2}\right) \\ $$$${x}+{y}=\mathrm{2} \\ $$
Commented by $@ty@m last updated on 17/Nov/17
how?
$${how}? \\ $$
Commented by math solver last updated on 17/Nov/17
 it should be 3y−x+14=0
$$\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{3y}−\mathrm{x}+\mathrm{14}=\mathrm{0} \\ $$
Commented by math solver last updated on 17/Nov/17
you took the point wrong
$$\mathrm{you}\:\mathrm{took}\:\mathrm{the}\:\mathrm{point}\:\mathrm{wrong} \\ $$
Commented by math solver last updated on 17/Nov/17
the point is (2,−4) .
$$\mathrm{the}\:\mathrm{point}\:\mathrm{is}\:\left(\mathrm{2},−\mathrm{4}\right)\:. \\ $$
Commented by $@ty@m last updated on 17/Nov/17
OIC  you are right.  Thanks..
$${OIC} \\ $$$${you}\:{are}\:{right}. \\ $$$${Thanks}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *