Question Number 24379 by j.masanja06@gmail.com last updated on 16/Nov/17
Answered by mrW1 last updated on 17/Nov/17
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{8}{y}+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}+\left({y}+\mathrm{4}\right)^{\mathrm{2}} −\mathrm{16}+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{the}\:{circle}\:{is}\:{in}\:{fact}\:{a}\:{point}\:{at}\:\left(\mathrm{2},−\mathrm{4}\right) \\ $$$$ \\ $$$${please}\:{check}\:{your}\:{question},\:{sir}. \\ $$
Answered by $@ty@m last updated on 17/Nov/17
$${The}\:{given}\:{circle}: \\ $$$$\left({x}−\mathrm{2}\right)^{\mathrm{2}} +\left({y}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:{it}\:{is}\:{the}\:{point}\:\left(−\mathrm{2},\mathrm{4}\right) \\ $$$$\therefore\:{Equation}\:{of}\:{tangent} \\ $$$${y}−\mathrm{4}=\frac{−\mathrm{3}−\mathrm{4}}{\mathrm{5}+\mathrm{2}}\left({x}+\mathrm{2}\right) \\ $$$${y}−\mathrm{4}=−\left({x}+\mathrm{2}\right) \\ $$$${x}+{y}=\mathrm{2} \\ $$
Commented by $@ty@m last updated on 17/Nov/17
$${how}? \\ $$
Commented by math solver last updated on 17/Nov/17
$$\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{3y}−\mathrm{x}+\mathrm{14}=\mathrm{0} \\ $$
Commented by math solver last updated on 17/Nov/17
$$\mathrm{you}\:\mathrm{took}\:\mathrm{the}\:\mathrm{point}\:\mathrm{wrong} \\ $$
Commented by math solver last updated on 17/Nov/17
$$\mathrm{the}\:\mathrm{point}\:\mathrm{is}\:\left(\mathrm{2},−\mathrm{4}\right)\:. \\ $$
Commented by $@ty@m last updated on 17/Nov/17
$${OIC} \\ $$$${you}\:{are}\:{right}. \\ $$$${Thanks}.. \\ $$