Menu Close

Question-24576




Question Number 24576 by math solver last updated on 21/Nov/17
Commented by math solver last updated on 21/Nov/17
sum of roots of the equation is ?
$$\mathrm{sum}\:\mathrm{of}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is}\:? \\ $$
Answered by mrW1 last updated on 21/Nov/17
((x+1)/2)=log_2  (2^x +3)−((log_2 (1980−2^(−x) ) )/(log_2  4))  ((x+1)/2)=log_2  (2^x +3)−((log_2 (1980−2^(−x) ) )/2)  x+1=2log_2  (2^x +3)−log_2  (1980−2^(−x) )  x+1=log_2  (((2^x +3)^2 )/(1980−2^(−x) ))  2^(x+1) =(((2^x +3)^2 )/(1980−2^(−x) ))  2×2^x =(((2^x +3)^2 )/(1980−2^(−x) ))  2×1980×2^x −2=(2^x +3)^2 =(2^x )^2 +6(2^x )+9  (2^x )^2 −3954(2^x )+11=0      ...(i)  ⇒2^x =((3954±(√(3954^2 −4×11)))/2)  ⇒2^x =1977±(√(3908518))  ⇒x=log_2  (1977±(√(3908518)))  (≈−8.49 or 11.95)  ⇒Σx=log_2  (1977+(√(3908518)))(1977−(√(3908518)))  ⇒Σx=log_2  (1977^2 −3908518)=log_2  11≈3.46    or directly from (i)  2^x_1  ×2^x_2  =11  ⇒2^(x_1 +x_2 ) =11  ⇒x_1 +x_2 =log_2  11
$$\frac{{x}+\mathrm{1}}{\mathrm{2}}=\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{2}^{{x}} +\mathrm{3}\right)−\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{1980}−\mathrm{2}^{−{x}} \right)\:}{\mathrm{log}_{\mathrm{2}} \:\mathrm{4}} \\ $$$$\frac{{x}+\mathrm{1}}{\mathrm{2}}=\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{2}^{{x}} +\mathrm{3}\right)−\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{1980}−\mathrm{2}^{−{x}} \right)\:}{\mathrm{2}} \\ $$$${x}+\mathrm{1}=\mathrm{2log}_{\mathrm{2}} \:\left(\mathrm{2}^{{x}} +\mathrm{3}\right)−\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{1980}−\mathrm{2}^{−{x}} \right) \\ $$$${x}+\mathrm{1}=\mathrm{log}_{\mathrm{2}} \:\frac{\left(\mathrm{2}^{{x}} +\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1980}−\mathrm{2}^{−{x}} } \\ $$$$\mathrm{2}^{{x}+\mathrm{1}} =\frac{\left(\mathrm{2}^{{x}} +\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1980}−\mathrm{2}^{−{x}} } \\ $$$$\mathrm{2}×\mathrm{2}^{{x}} =\frac{\left(\mathrm{2}^{{x}} +\mathrm{3}\right)^{\mathrm{2}} }{\mathrm{1980}−\mathrm{2}^{−{x}} } \\ $$$$\mathrm{2}×\mathrm{1980}×\mathrm{2}^{{x}} −\mathrm{2}=\left(\mathrm{2}^{{x}} +\mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} +\mathrm{6}\left(\mathrm{2}^{{x}} \right)+\mathrm{9} \\ $$$$\left(\mathrm{2}^{{x}} \right)^{\mathrm{2}} −\mathrm{3954}\left(\mathrm{2}^{{x}} \right)+\mathrm{11}=\mathrm{0}\:\:\:\:\:\:…\left({i}\right) \\ $$$$\Rightarrow\mathrm{2}^{{x}} =\frac{\mathrm{3954}\pm\sqrt{\mathrm{3954}^{\mathrm{2}} −\mathrm{4}×\mathrm{11}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}^{{x}} =\mathrm{1977}\pm\sqrt{\mathrm{3908518}} \\ $$$$\Rightarrow{x}=\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{1977}\pm\sqrt{\mathrm{3908518}}\right) \\ $$$$\left(\approx−\mathrm{8}.\mathrm{49}\:{or}\:\mathrm{11}.\mathrm{95}\right) \\ $$$$\Rightarrow\Sigma{x}=\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{1977}+\sqrt{\mathrm{3908518}}\right)\left(\mathrm{1977}−\sqrt{\mathrm{3908518}}\right) \\ $$$$\Rightarrow\Sigma{x}=\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{1977}^{\mathrm{2}} −\mathrm{3908518}\right)=\mathrm{log}_{\mathrm{2}} \:\mathrm{11}\approx\mathrm{3}.\mathrm{46} \\ $$$$ \\ $$$${or}\:{directly}\:{from}\:\left({i}\right) \\ $$$$\mathrm{2}^{{x}_{\mathrm{1}} } ×\mathrm{2}^{{x}_{\mathrm{2}} } =\mathrm{11} \\ $$$$\Rightarrow\mathrm{2}^{{x}_{\mathrm{1}} +{x}_{\mathrm{2}} } =\mathrm{11} \\ $$$$\Rightarrow{x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\mathrm{log}_{\mathrm{2}} \:\mathrm{11} \\ $$
Commented by mrW1 last updated on 22/Nov/17
The roots of eqn. (i) are x_1  and x_2 .  But the eqn. (i) is a quadratic eqn.   about 2^x , not about x.
$${The}\:{roots}\:{of}\:{eqn}.\:\left({i}\right)\:{are}\:{x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} . \\ $$$${But}\:{the}\:{eqn}.\:\left({i}\right)\:{is}\:{a}\:{quadratic}\:{eqn}.\: \\ $$$${about}\:\mathrm{2}^{{x}} ,\:{not}\:{about}\:{x}. \\ $$
Commented by math solver last updated on 22/Nov/17
i want to ask :  the roots of eq. (i) are: x_1  and x_2 .  or 2^x_1   and 2^x_2    ?
$$\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{ask}\:: \\ $$$$\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{eq}.\:\left({i}\right)\:\mathrm{are}:\:{x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} . \\ $$$${or}\:\mathrm{2}^{{x}_{\mathrm{1}} } \:{and}\:\mathrm{2}^{{x}_{\mathrm{2}} } \:\:? \\ $$
Commented by mrW1 last updated on 22/Nov/17
The original question asks how much  is x_1 +x_2 +..., not how much is  2^x_1  +2^x_2  +...
$${The}\:{original}\:{question}\:{asks}\:{how}\:{much} \\ $$$${is}\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +…,\:{not}\:{how}\:{much}\:{is} \\ $$$$\mathrm{2}^{{x}_{\mathrm{1}} } +\mathrm{2}^{{x}_{\mathrm{2}} } +… \\ $$
Commented by math solver last updated on 22/Nov/17
thank you sir!
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *