Question Number 24641 by math solver last updated on 23/Nov/17
Commented by math solver last updated on 23/Nov/17
$$? \\ $$
Answered by ajfour last updated on 23/Nov/17
$${x}^{\mathrm{2}} +{ax}+{b}=\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{b}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\boldsymbol{{C}}{ase}:\:{I} \\ $$$${if}\:\:\:\:\:\:\:−\frac{{a}}{\mathrm{2}}\:\:<\:\mathrm{0} \\ $$$${f}\left({x}\right)\:{is}\:{increasing}\:{in}\:\left[\mathrm{0},\mathrm{2}\right] \\ $$$${so}\:\:\:\:{f}\left(\mathrm{0}\right)={b}=\mathrm{2} \\ $$$${and}\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{a}}=−\frac{\mathrm{3}}{\mathrm{2}}\:\:;\:\:\boldsymbol{{b}}=\mathrm{2} \\ $$$$\boldsymbol{{C}}{ase}\:{II}\:: \\ $$$${if}\:\:\:\:\:\:\:\:\:\mathrm{2}\:<\:−\frac{{a}}{\mathrm{2}}\: \\ $$$${f}\left({x}\right)\:{is}\:{decreasing}\:{in}\:\left[\mathrm{0},\mathrm{2}\right] \\ $$$${So}\:\:\:\:\:\:{f}\left(\mathrm{0}\right)={b}=\mathrm{3}\:\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{2} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{a}}=−\frac{\mathrm{5}}{\mathrm{2}}\:\:;\:\:\boldsymbol{{b}}=\mathrm{3} \\ $$$$\boldsymbol{{C}}{ase}\:{III}: \\ $$$${if}\:\:\:\:\:\:\:\:\:\mathrm{0}\:<\:−\frac{{a}}{\mathrm{2}}\:<\:\mathrm{2} \\ $$$${Then}\:\:\:\:\:\:{b}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{2} \\ $$$${and}\:\:\:{either}\:\:\:{f}\left(\mathrm{0}\right)=\:{b}=\mathrm{3}\:\:{or}\:\:\: \\ $$$$\:\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:\:{case}\:{III}\left({a}\right): \\ $$$$\:\:\:\:\:\:\:{b}=\mathrm{3}\:\:\:{then}\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}\:\:\:{or}\:\:{a}=\pm\mathrm{2} \\ $$$${that}\:{is}\:\:\:\:\left(\boldsymbol{{a}},\boldsymbol{{b}}\right)\equiv\left(\pm\mathrm{2},\:\mathrm{3}\right) \\ $$$${case}\:{III}\left({b}\right): \\ $$$$\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3}\:\:\:\:\Rightarrow\:\:\:{b}=−\mathrm{1}−\mathrm{2}{a} \\ $$$${so}\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}={b}−\mathrm{2}\:=\:−\mathrm{1}−\mathrm{2}{a}−\mathrm{2} \\ $$$${a}^{\mathrm{2}} +\mathrm{8}{a}+\mathrm{12}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({a}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:{a}=−\mathrm{2},\:−\mathrm{6} \\ $$$$\Rightarrow\:\:{b}=−\mathrm{1}−\mathrm{2}{a}\:=\:\mathrm{3}\:\:{or}\:\:\mathrm{11} \\ $$$${that}\:{is}\:\:\:\left(\boldsymbol{{a}},\boldsymbol{{b}}\right)\equiv\left(−\mathrm{2},\:\mathrm{3}\right)\:\:\:{or} \\ $$$$\:\:\:\:\:\:\:\:\equiv\left(−\mathrm{6},\:\mathrm{11}\right)\:. \\ $$