Menu Close

Question-24641




Question Number 24641 by math solver last updated on 23/Nov/17
Commented by math solver last updated on 23/Nov/17
?
$$? \\ $$
Answered by ajfour last updated on 23/Nov/17
x^2 +ax+b=(x+(a/2))^2 +b−(a^2 /4)  Case: I  if       −(a/2)  < 0  f(x) is increasing in [0,2]  so    f(0)=b=2  and  f(2)=4+2a+b=3  ⇒   a=−(3/2)  ;  b=2  Case II :  if         2 < −(a/2)   f(x) is decreasing in [0,2]  So      f(0)=b=3    and             f(2)=4+2a+b=2  ⇒   a=−(5/2)  ;  b=3  Case III:  if         0 < −(a/2) < 2  Then      b−(a^2 /4) = 2  and   either   f(0)= b=3  or         f(2)=4+2a+b=3  ⇒    case III(a):         b=3   then   (a^2 /4)=1   or  a=±2  that is    (a,b)≡(±2, 3)  case III(b):  4+2a+b=3    ⇒   b=−1−2a  so    (a^2 /4)=b−2 = −1−2a−2  a^2 +8a+12=0  ⇒   (a+4)^2 =4           a=−2, −6  ⇒  b=−1−2a = 3  or  11  that is   (a,b)≡(−2, 3)   or          ≡(−6, 11) .
$${x}^{\mathrm{2}} +{ax}+{b}=\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +{b}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\boldsymbol{{C}}{ase}:\:{I} \\ $$$${if}\:\:\:\:\:\:\:−\frac{{a}}{\mathrm{2}}\:\:<\:\mathrm{0} \\ $$$${f}\left({x}\right)\:{is}\:{increasing}\:{in}\:\left[\mathrm{0},\mathrm{2}\right] \\ $$$${so}\:\:\:\:{f}\left(\mathrm{0}\right)={b}=\mathrm{2} \\ $$$${and}\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{a}}=−\frac{\mathrm{3}}{\mathrm{2}}\:\:;\:\:\boldsymbol{{b}}=\mathrm{2} \\ $$$$\boldsymbol{{C}}{ase}\:{II}\:: \\ $$$${if}\:\:\:\:\:\:\:\:\:\mathrm{2}\:<\:−\frac{{a}}{\mathrm{2}}\: \\ $$$${f}\left({x}\right)\:{is}\:{decreasing}\:{in}\:\left[\mathrm{0},\mathrm{2}\right] \\ $$$${So}\:\:\:\:\:\:{f}\left(\mathrm{0}\right)={b}=\mathrm{3}\:\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{2} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{a}}=−\frac{\mathrm{5}}{\mathrm{2}}\:\:;\:\:\boldsymbol{{b}}=\mathrm{3} \\ $$$$\boldsymbol{{C}}{ase}\:{III}: \\ $$$${if}\:\:\:\:\:\:\:\:\:\mathrm{0}\:<\:−\frac{{a}}{\mathrm{2}}\:<\:\mathrm{2} \\ $$$${Then}\:\:\:\:\:\:{b}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\:=\:\mathrm{2} \\ $$$${and}\:\:\:{either}\:\:\:{f}\left(\mathrm{0}\right)=\:{b}=\mathrm{3}\:\:{or}\:\:\: \\ $$$$\:\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3} \\ $$$$\Rightarrow\:\:\:\:{case}\:{III}\left({a}\right): \\ $$$$\:\:\:\:\:\:\:{b}=\mathrm{3}\:\:\:{then}\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{1}\:\:\:{or}\:\:{a}=\pm\mathrm{2} \\ $$$${that}\:{is}\:\:\:\:\left(\boldsymbol{{a}},\boldsymbol{{b}}\right)\equiv\left(\pm\mathrm{2},\:\mathrm{3}\right) \\ $$$${case}\:{III}\left({b}\right): \\ $$$$\mathrm{4}+\mathrm{2}{a}+{b}=\mathrm{3}\:\:\:\:\Rightarrow\:\:\:{b}=−\mathrm{1}−\mathrm{2}{a} \\ $$$${so}\:\:\:\:\frac{{a}^{\mathrm{2}} }{\mathrm{4}}={b}−\mathrm{2}\:=\:−\mathrm{1}−\mathrm{2}{a}−\mathrm{2} \\ $$$${a}^{\mathrm{2}} +\mathrm{8}{a}+\mathrm{12}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left({a}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:{a}=−\mathrm{2},\:−\mathrm{6} \\ $$$$\Rightarrow\:\:{b}=−\mathrm{1}−\mathrm{2}{a}\:=\:\mathrm{3}\:\:{or}\:\:\mathrm{11} \\ $$$${that}\:{is}\:\:\:\left(\boldsymbol{{a}},\boldsymbol{{b}}\right)\equiv\left(−\mathrm{2},\:\mathrm{3}\right)\:\:\:{or} \\ $$$$\:\:\:\:\:\:\:\:\equiv\left(−\mathrm{6},\:\mathrm{11}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *