Menu Close

Question-24944




Question Number 24944 by soufiane zarik last updated on 29/Nov/17
Commented by prakash jain last updated on 30/Nov/17
x=n+f  0≤f<1, n∈Z,n≥0  [(n+f)^2 ]=[n+f]^2   ⇒[n^2 +2nf+f^2 ]=n^2   ⇒n^2 +[2nf+f^2 ]=n^2   [2nf+f^2 ]=0  0<2nf+f^2 <1  f^2 +2nf−1<0∧ 2nf+f^2 >0  the expression is less than 0  between the roots  ((−2n±(√(4n^2 +4)))/2)=−n±(√(n^2 +1))  x=[k,(√(k^2 +1)))for k≥0  x=−n+f, f>0,n>0  [n^2 −2nf+f^2 ]=n^2   [f^2 −2nf]=0  0≤f^2 −2nf<1⇒f=0  x=k,k∈Z^−   x=[k,(√(k^2 +1))],k≥0  x=k,k<0
$${x}={n}+{f}\:\:\mathrm{0}\leqslant{f}<\mathrm{1},\:{n}\in\mathbb{Z},{n}\geqslant\mathrm{0} \\ $$$$\left[\left({n}+{f}\right)^{\mathrm{2}} \right]=\left[{n}+{f}\right]^{\mathrm{2}} \\ $$$$\Rightarrow\left[{n}^{\mathrm{2}} +\mathrm{2}{nf}+{f}^{\mathrm{2}} \right]={n}^{\mathrm{2}} \\ $$$$\Rightarrow{n}^{\mathrm{2}} +\left[\mathrm{2}{nf}+{f}^{\mathrm{2}} \right]={n}^{\mathrm{2}} \\ $$$$\left[\mathrm{2}{nf}+{f}^{\mathrm{2}} \right]=\mathrm{0} \\ $$$$\mathrm{0}<\mathrm{2}{nf}+{f}^{\mathrm{2}} <\mathrm{1} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}−\mathrm{1}<\mathrm{0}\wedge\:\mathrm{2}{nf}+{f}^{\mathrm{2}} >\mathrm{0} \\ $$$${the}\:{expression}\:{is}\:{less}\:{than}\:\mathrm{0} \\ $$$${between}\:{the}\:{roots} \\ $$$$\frac{−\mathrm{2}{n}\pm\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}=−{n}\pm\sqrt{{n}^{\mathrm{2}} +\mathrm{1}} \\ $$$${x}=\left[{k},\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}\right){for}\:{k}\geqslant\mathrm{0} \\ $$$${x}=−{n}+{f},\:{f}>\mathrm{0},{n}>\mathrm{0} \\ $$$$\left[{n}^{\mathrm{2}} −\mathrm{2}{nf}+{f}^{\mathrm{2}} \right]={n}^{\mathrm{2}} \\ $$$$\left[{f}^{\mathrm{2}} −\mathrm{2}{nf}\right]=\mathrm{0} \\ $$$$\mathrm{0}\leqslant{f}^{\mathrm{2}} −\mathrm{2}{nf}<\mathrm{1}\Rightarrow{f}=\mathrm{0} \\ $$$${x}={k},{k}\in\mathbb{Z}^{−} \\ $$$${x}=\left[{k},\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}\right],{k}\geqslant\mathrm{0} \\ $$$${x}={k},{k}<\mathrm{0} \\ $$
Commented by soufiane zarik last updated on 29/Nov/17
thanks alot sir !
$$\mathrm{thanks}\:\mathrm{alot}\:\mathrm{sir}\:! \\ $$
Commented by prakash jain last updated on 30/Nov/17
I have updated the solution. There  were few mistakes earlier.
$$\mathrm{I}\:\mathrm{have}\:\mathrm{updated}\:\mathrm{the}\:\mathrm{solution}.\:\mathrm{There} \\ $$$$\mathrm{were}\:\mathrm{few}\:\mathrm{mistakes}\:\mathrm{earlier}. \\ $$
Commented by soufiane zarik last updated on 30/Nov/17
thank you very much sir !!
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir}\:!! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *