Menu Close

Question-25086




Question Number 25086 by Tinkutara last updated on 03/Dec/17
Commented by Tinkutara last updated on 03/Dec/17
Commented by ajfour last updated on 04/Dec/17
I_z =I_1 +I_2 =I_3 +I_4     (⊥ axes theorem)  where axes if z is through O and  perpendicular to plane of plate.  for a square plate I_1 =I_2 =I_3 =I_4  .  so even (c) is true.
$${I}_{{z}} ={I}_{\mathrm{1}} +{I}_{\mathrm{2}} ={I}_{\mathrm{3}} +{I}_{\mathrm{4}} \:\:\:\:\left(\bot\:{axes}\:{theorem}\right) \\ $$$${where}\:{axes}\:{if}\:{z}\:{is}\:{through}\:{O}\:{and} \\ $$$${perpendicular}\:{to}\:{plane}\:{of}\:{plate}. \\ $$$${for}\:{a}\:{square}\:{plate}\:{I}_{\mathrm{1}} ={I}_{\mathrm{2}} ={I}_{\mathrm{3}} ={I}_{\mathrm{4}} \:. \\ $$$${so}\:{even}\:\left({c}\right)\:{is}\:{true}. \\ $$
Commented by Tinkutara last updated on 03/Dec/17
But answer is given (c) option also.
$${But}\:{answer}\:{is}\:{given}\:\left({c}\right)\:{option}\:{also}. \\ $$
Commented by Tinkutara last updated on 05/Dec/17
Why I_1 =I_3 ?
$${Why}\:{I}_{\mathrm{1}} ={I}_{\mathrm{3}} ? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *