Menu Close

Question-25114




Question Number 25114 by Mr easy last updated on 04/Dec/17
Commented by moxhix last updated on 04/Dec/17
x=(√(1+(√(1+(√(1+x))))))>(√(1+(√(1+0))))  ∴x>(√2)  put φ:  φ=(√(1+φ))  (φ>1)  φ^2 −φ−1=0  ∴φ=((1+(√5))/2)  (golden ratio)    φ=(√(1+φ))=(√(1+(√(1+φ))))=(√(1+(√(1+(√(1+φ))))))  so  x=φ  −−−−−−−−−−−−−−−−−−  golden ratio:  φ=(√(1+(√(1+(√(1+(√(1+(√(1+....))))))))))=((1+(√5))/2)=1.618...
$${x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}}}}>\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{0}}} \\ $$$$\therefore{x}>\sqrt{\mathrm{2}} \\ $$$${put}\:\phi:\:\:\phi=\sqrt{\mathrm{1}+\phi}\:\:\left(\phi>\mathrm{1}\right) \\ $$$$\phi^{\mathrm{2}} −\phi−\mathrm{1}=\mathrm{0} \\ $$$$\therefore\phi=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\left({golden}\:{ratio}\right) \\ $$$$ \\ $$$$\phi=\sqrt{\mathrm{1}+\phi}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\phi}}=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\phi}}} \\ $$$${so} \\ $$$${x}=\phi \\ $$$$−−−−−−−−−−−−−−−−−− \\ $$$${golden}\:{ratio}: \\ $$$$\phi=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+….}}}}}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\mathrm{1}.\mathrm{618}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *