Question-25300 Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 25300 by SAGARSTARK last updated on 07/Dec/17 Commented by prakash jain last updated on 08/Dec/17 YoumayalsowanttoseeQ2088.Differentbutsimilarquestion. Commented by moxhix last updated on 08/Dec/17 (tanx)2=1(x=π/4)(tanx)2<1(0⩽x<π/4)∴limn→∞(tanx)2n={1(x=π/4)0(0⩽x<π/4)Double subscripts: use braces to clarifyDouble subscripts: use braces to clarify=∫0π/40dx=0an=∫0π/4tan2nxdx=∫0π/4tan2n−2x(1cos2x−1)dx=∫0π/4tan2n−2x(1cos2x)dx−an−1t=tanx,dt=1cos2xdx,x:[0,π/4]⇒t:[0,1]=∫01t2n−2dt−an−1an=12n−1−an−1∴12n−1=an+an−1a1=∫0π/4tan2xdx=[tanx−x]0π/4=1−π4∑nk=1(−1)k−12k−1=1+∑nk=2(−1)k−1(ak+ak−1)=1+{−(a2+a1)+(a3+a2)−…+(−1)n−1(an+an−1)[=1+(−a1+(−1)n−1an)→(n→∞)1−a1+0=π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-by-betta-function-0-2pi-sin-5-z-dz-Next Next post: x-2-y-z-2-3-y-2-z-x-2-5-z-2-x-y-2-12- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.