Menu Close

Question-25300




Question Number 25300 by SAGARSTARK last updated on 07/Dec/17
Commented by prakash jain last updated on 08/Dec/17
You may also want to see  Q2088. Different but similar  question.
YoumayalsowanttoseeQ2088.Differentbutsimilarquestion.
Commented by moxhix last updated on 08/Dec/17
(tanx)^2 =1 (x=π/4)  (tanx)^2 <1 (0≤x<π/4)  ∴lim_(n→∞) (tanx)^(2n) = { ((1 (x=π/4))),((0 (0≤x<π/4))) :}  lim_(n→∞) a_n =∫_0 ^(π/4) lim_(n→∞) (tanx)^(2n) dx  (∵tanx∈uniformly continuous)      =∫_0 ^(π/4) 0dx=0    a_n =∫_0 ^(π/4) tan^(2n) x dx       =∫_0 ^(π/4) tan^(2n−2) x((1/(cos^2 x))−1) dx       =∫_0 ^(π/4) tan^(2n−2) x((1/(cos^2 x))) dx− a_(n−1)   t=tanx, dt=(1/(cos^2 x))dx, x:[0,π/4]⇒t:[0,1]       =∫_0 ^1 t^(2n−2) dt−a_(n−1)   a_n =(1/(2n−1))−a_(n−1)   ∴(1/(2n−1))=a_n +a_(n−1)     a_1 =∫_0 ^(π/4) tan^2 x dx=[tanx−x]_0 ^(π/4) =1−(π/4)    Σ_(k=1) ^n (((−1)^(k−1) )/(2k−1))=1+Σ_(k=2) ^n (−1)^(k−1) (a_k +a_(k−1) )      =1+{−(a_2 +a_1 )+(a_3 +a_2 )−...+(−1)^(n−1) (a_n +a_(n−1) )[      =1+(−a_1 +(−1)^(n−1) a_n )  →_((n→∞)) 1−a_1 +0=(π/4)
(tanx)2=1(x=π/4)(tanx)2<1(0x<π/4)limn(tanx)2n={1(x=π/4)0(0x<π/4)Double subscripts: use braces to clarify=0π/40dx=0an=0π/4tan2nxdx=0π/4tan2n2x(1cos2x1)dx=0π/4tan2n2x(1cos2x)dxan1t=tanx,dt=1cos2xdx,x:[0,π/4]t:[0,1]=01t2n2dtan1an=12n1an112n1=an+an1a1=0π/4tan2xdx=[tanxx]0π/4=1π4nk=1(1)k12k1=1+nk=2(1)k1(ak+ak1)=1+{(a2+a1)+(a3+a2)+(1)n1(an+an1)[=1+(a1+(1)n1an)(n)1a1+0=π4

Leave a Reply

Your email address will not be published. Required fields are marked *