Menu Close

Question-25528




Question Number 25528 by Mahesh Andiboina last updated on 11/Dec/17
Commented by Mahesh Andiboina last updated on 11/Dec/17
plz ans both
$$\mathrm{plz}\:\mathrm{ans}\:\mathrm{both} \\ $$
Answered by sushmitak last updated on 11/Dec/17
y=(1/( (√x)))=x^(−1/2)   (d/dx)y=−(1/2)x^(−(1/2)−1) =−(1/2)x^(−(3/2)) =−(1/(2x(√x)))
$${y}=\frac{\mathrm{1}}{\:\sqrt{{x}}}={x}^{−\mathrm{1}/\mathrm{2}} \\ $$$$\frac{{d}}{{dx}}{y}=−\frac{\mathrm{1}}{\mathrm{2}}{x}^{−\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}{x}^{−\frac{\mathrm{3}}{\mathrm{2}}} =−\frac{\mathrm{1}}{\mathrm{2}{x}\sqrt{{x}}} \\ $$
Commented by prakash jain last updated on 11/Dec/17
(d/dx)x^n =nx^(n−1)   (d/dx)x^(−1/2) =−(1/2)x^(−3/2)
$$\frac{{d}}{{dx}}{x}^{{n}} ={nx}^{{n}−\mathrm{1}} \\ $$$$\frac{{d}}{{dx}}{x}^{−\mathrm{1}/\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}}{x}^{−\mathrm{3}/\mathrm{2}} \\ $$
Commented by ibraheem160 last updated on 11/Dec/17
i guessed the answer should be  −(3/(2(√x)))
$${i}\:{guessed}\:{the}\:{answer}\:{should}\:{be}\:\:−\frac{\mathrm{3}}{\mathrm{2}\sqrt{{x}}} \\ $$
Answered by sushmitak last updated on 11/Dec/17
(dy/dx)=((dy/dt)/(dx/dt))=(((d/dt)(t^3 −t))/((d/dt)(3t^2 −1)))=((3t^2 −1)/(6t))
$$\frac{{dy}}{{dx}}=\frac{{dy}/{dt}}{{dx}/{dt}}=\frac{\frac{{d}}{{dt}}\left({t}^{\mathrm{3}} −{t}\right)}{\frac{{d}}{{dt}}\left(\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{\mathrm{3}{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{6}{t}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *