Menu Close

Question-25609




Question Number 25609 by behi.8.3.4.17@gmail.com last updated on 12/Dec/17
Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17
BE=EC,AB=12,AC=10  parallel lines to:AE,with equal distance  from:A and B,toward C,divide the area  of AB^△ C at ratio: 1:4:2:3 .  ....................     AE=?   ..............
BE=EC,AB=12,AC=10parallellinesto:AE,withequaldistancefrom:AandB,towardC,dividetheareaofABCatratio:1:4:2:3...AE=?..
Commented by ajfour last updated on 12/Dec/17
Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17
thanks in advance sir ajfour.  nice,smart,perfect,beautiful.
thanksinadvancesirajfour.nice,smart,perfect,beautiful.
Commented by ajfour last updated on 12/Dec/17
(x^2 /a^2 )=(1/(1+4))   ⇒  a=x(√5)  (((10−x)^2 )/(100))=(3/(3+2))    ⇒  x=10−2(√(15))  so   a=10((√5)−(√3))  cos θ+cos (180−θ)=0  ⇒ ((b^2 +a^2 −(12)^2 )/(2ab))+ ((b^2 +a^2 −(10)^2 )/(2ab)) =0  ⇒ b^2 =122−a^2      AE= b =(√(122−100((√5)−(√3))^2 ))            =(√(200(√(15))−678)) .
x2a2=11+4a=x5(10x)2100=33+2x=10215soa=10(53)cosθ+cos(180θ)=0b2+a2(12)22ab+b2+a2(10)22ab=0b2=122a2AE=b=122100(53)2=20015678.

Leave a Reply

Your email address will not be published. Required fields are marked *