Menu Close

Question-25871




Question Number 25871 by ajfour last updated on 16/Dec/17
Commented by ajfour last updated on 16/Dec/17
△ABC is equilateral and G its  centroid. Parabolas AGB, BGC,  and CGA each have their vertices  at G. Find ratio of area in brown  to the area of the △ABC .
$$\bigtriangleup{ABC}\:{is}\:{equilateral}\:{and}\:{G}\:{its} \\ $$$${centroid}.\:{Parabolas}\:{AGB},\:{BGC}, \\ $$$${and}\:{CGA}\:{each}\:{have}\:{their}\:{vertices} \\ $$$${at}\:{G}.\:{Find}\:{ratio}\:{of}\:{area}\:{in}\:{brown} \\ $$$${to}\:{the}\:{area}\:{of}\:{the}\:\bigtriangleup{ABC}\:. \\ $$
Commented by moxhix last updated on 16/Dec/17
put l=AB=BC=CD  distance of G and BC=(1/3)×((√3)/2)l=(l/(2(√3)))  find BGC by integration  y=−ax(x−l)=−a(x−(l/2))^2 +((al^2 )/4)  (l/(2(√3)))=((al^2 )/4)  ∴a=(2/(l(√3)))  BGC=∫_0 ^( l) −ax(x−l)dx=((al^3 )/6)=(l^2 /(3(√3)))    △ABC=(1/2)l((√3)/2)l=(((√3)l^2 )/4)    ((brown)/(△ABC))=((3BGC−△ABC)/(△ABC))=(3(l^2 /(3(√3)))−(((√3)l^2 )/4))/((((√3)l^2 )/4))      =(((√3)/3)−((√3)/4))/(((√3)/4))      =(1/3)
$${put}\:{l}={AB}={BC}={CD} \\ $$$${distance}\:{of}\:{G}\:{and}\:{BC}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{l}=\frac{{l}}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$${find}\:{BGC}\:{by}\:{integration} \\ $$$${y}=−{ax}\left({x}−{l}\right)=−{a}\left({x}−\frac{{l}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{{al}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\frac{{l}}{\mathrm{2}\sqrt{\mathrm{3}}}=\frac{{al}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\therefore{a}=\frac{\mathrm{2}}{{l}\sqrt{\mathrm{3}}} \\ $$$${BGC}=\int_{\mathrm{0}} ^{\:{l}} −{ax}\left({x}−{l}\right){dx}=\frac{{al}^{\mathrm{3}} }{\mathrm{6}}=\frac{{l}^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$$ \\ $$$$\bigtriangleup{ABC}=\frac{\mathrm{1}}{\mathrm{2}}{l}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{l}=\frac{\sqrt{\mathrm{3}}{l}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$$$\frac{{brown}}{\bigtriangleup{ABC}}=\frac{\mathrm{3}{BGC}−\bigtriangleup{ABC}}{\bigtriangleup{ABC}}=\left(\mathrm{3}\frac{{l}^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}}−\frac{\sqrt{\mathrm{3}}{l}^{\mathrm{2}} }{\mathrm{4}}\right)/\left(\frac{\sqrt{\mathrm{3}}{l}^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$\:\:\:\:=\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)/\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by ajfour last updated on 16/Dec/17
Great Sir! Thank you too much.
$${Great}\:{Sir}!\:{Thank}\:{you}\:{too}\:{much}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *