Menu Close

Question-26007




Question Number 26007 by Tinkutara last updated on 17/Dec/17
Answered by ajfour last updated on 17/Dec/17
r_1 (tan (B/2)+tan (C/2))=a  r(cot (B/2)+cot (C/2))=a  ⇒ (r_1 /r)=((cot (B/2)+cot (C/2))/(tan (B/2)+tan (C/2)))           =(1/(tan (B/2)tan (C/2)))  and we know Σtan (B/2)tan (C/2)=1  let x=tan (A/2) , y=tan (B/2), z=tan (C/2)  ⇒  Σ((r_1 /r))=Σ(1/(xy))  and  Σxy=1  ⇒   Σ((r_1 /r)) ≥ 9 .
$${r}_{\mathrm{1}} \left(\mathrm{tan}\:\frac{{B}}{\mathrm{2}}+\mathrm{tan}\:\frac{{C}}{\mathrm{2}}\right)={a} \\ $$$${r}\left(\mathrm{cot}\:\frac{{B}}{\mathrm{2}}+\mathrm{cot}\:\frac{{C}}{\mathrm{2}}\right)={a} \\ $$$$\Rightarrow\:\frac{{r}_{\mathrm{1}} }{{r}}=\frac{\mathrm{cot}\:\frac{{B}}{\mathrm{2}}+\mathrm{cot}\:\frac{{C}}{\mathrm{2}}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}+\mathrm{tan}\:\frac{{C}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{B}}{\mathrm{2}}\mathrm{tan}\:\frac{{C}}{\mathrm{2}}} \\ $$$${and}\:{we}\:{know}\:\Sigma\mathrm{tan}\:\frac{{B}}{\mathrm{2}}\mathrm{tan}\:\frac{{C}}{\mathrm{2}}=\mathrm{1} \\ $$$${let}\:{x}=\mathrm{tan}\:\frac{{A}}{\mathrm{2}}\:,\:{y}=\mathrm{tan}\:\frac{{B}}{\mathrm{2}},\:{z}=\mathrm{tan}\:\frac{{C}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\Sigma\left(\frac{{r}_{\mathrm{1}} }{{r}}\right)=\Sigma\frac{\mathrm{1}}{{xy}}\:\:{and}\:\:\Sigma{xy}=\mathrm{1} \\ $$$$\Rightarrow\:\:\:\Sigma\left(\frac{{r}_{\mathrm{1}} }{{r}}\right)\:\geqslant\:\mathrm{9}\:. \\ $$
Commented by Tinkutara last updated on 18/Dec/17
Thank you Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *