Menu Close

Question-26205




Question Number 26205 by ajfour last updated on 22/Dec/17
Commented by ajfour last updated on 22/Dec/17
Find the area of the uncoloured  region inside triangle in terms  of radii a , and b of the lower  circles.
Findtheareaoftheuncolouredregioninsidetriangleintermsofradiia,andbofthelowercircles.
Answered by mrW1 last updated on 22/Dec/17
One side of the triangle is 2(a+b).  The other two sides are d and the  radius of the big circle is c.  d=b+c.  (b+c)^2 =(a+b)^2 +(a+c)^2   b^2 +2bc+c^2 =a^2 +b^2 +2ab+a^2 +2ac+c^2   (b−a)c=a(b+a)  ⇒c=(((b+a)a)/(b−a))>0  ⇒b>a    angle of triangle at center of circle c:  tan (θ/2)=((b+a)/(a+c))=((b+a)/(a+(((b+a)a)/(b−a))))=((b^2 −a^2 )/(2ab))  ⇒θ=2tan^(−1) ((b^2 −a^2 )/(2ab))=π−2ϕ    angle of triangle at center of circle b:  tan ϕ=((a+c)/(b+a))=((2ab)/(b^2 −a^2 ))  ⇒ϕ=tan^(−1) ((2ab)/(b^2 −a^2 ))    area of triangle:  A_1 =((2(a+b)(c+a))/2)=(a+b)(((b+a)/(b−a))+1)a=((2ab(a+b))/(b−a))  area of part of triangle a:  A_2 =((πa^2 )/2)  area of parts of triangle b:  A_3 =((2ϕ)/(2π))×πb^2 =ϕb^2 =b^2  tan^(−1) ((2ab)/(b^2 −a^2 ))  area of part of triangle c:  A_4 =(θ/(2π))×πc^2 =((π−2ϕ)/2)×c^2   =((π/2)−tan^(−1) ((2ab)/(b^2 −a^2 )))×((a^2 (a+b)^2 )/((b−a)^2 ))    area of the rest:  A=A_1 −(A_2 +A_3 +A_4 )  =((2ab(a+b))/(b−a))−((πa^2 )/2)−b^2  tan^(−1) ((2ab)/(b^2 −a^2 ))−((π/2)−tan^(−1) ((2ab)/(b^2 −a^2 )))×((a^2 (a+b)^2 )/((b−a)^2 ))  =((2ab(a+b))/(b−a))−((πa^2 )/2)[1+(((a+b)^2 )/((b−a)^2 ))]−[b^2 −((a^2 (a+b)^2 )/((b−a)^2 ))] tan^(−1) ((2ab)/(b^2 −a^2 ))  =((2ab(a+b))/(b−a))−πa^2 [((a^2 +b^2 )/((b−a)^2 ))]−[(((a^2 +b^2 )(b^2 −2ab−a^2 ))/((b−a)^2 ))] tan^(−1) ((2ab)/(b^2 −a^2 ))  ⇒A=((2ab(a+b))/(b−a))−((a^2 +b^2 )/((b−a)^2 ))×[πa^2 +(b^2 −a^2 −2ab) tan^(−1) ((2ab)/(b^2 −a^2 ))]
Onesideofthetriangleis2(a+b).Theothertwosidesaredandtheradiusofthebigcircleisc.d=b+c.(b+c)2=(a+b)2+(a+c)2b2+2bc+c2=a2+b2+2ab+a2+2ac+c2(ba)c=a(b+a)c=(b+a)aba>0b>aangleoftriangleatcenterofcirclec:tanθ2=b+aa+c=b+aa+(b+a)aba=b2a22abθ=2tan1b2a22ab=π2φangleoftriangleatcenterofcircleb:tanφ=a+cb+a=2abb2a2φ=tan12abb2a2areaoftriangle:A1=2(a+b)(c+a)2=(a+b)(b+aba+1)a=2ab(a+b)baareaofpartoftrianglea:A2=πa22areaofpartsoftriangleb:A3=2φ2π×πb2=φb2=b2tan12abb2a2areaofpartoftrianglec:A4=θ2π×πc2=π2φ2×c2=(π2tan12abb2a2)×a2(a+b)2(ba)2areaoftherest:A=A1(A2+A3+A4)=2ab(a+b)baπa22b2tan12abb2a2(π2tan12abb2a2)×a2(a+b)2(ba)2=2ab(a+b)baπa22[1+(a+b)2(ba)2][b2a2(a+b)2(ba)2]tan12abb2a2=2ab(a+b)baπa2[a2+b2(ba)2][(a2+b2)(b22aba2)(ba)2]tan12abb2a2A=2ab(a+b)baa2+b2(ba)2×[πa2+(b2a22ab)tan12abb2a2]
Commented by ajfour last updated on 22/Dec/17
Great Sir, Magnificient !
GreatSir,Magnificient!

Leave a Reply

Your email address will not be published. Required fields are marked *