Question-26205 Tinku Tara June 4, 2023 Mensuration 0 Comments FacebookTweetPin Question Number 26205 by ajfour last updated on 22/Dec/17 Commented by ajfour last updated on 22/Dec/17 Findtheareaoftheuncolouredregioninsidetriangleintermsofradiia,andbofthelowercircles. Answered by mrW1 last updated on 22/Dec/17 Onesideofthetriangleis2(a+b).Theothertwosidesaredandtheradiusofthebigcircleisc.d=b+c.(b+c)2=(a+b)2+(a+c)2b2+2bc+c2=a2+b2+2ab+a2+2ac+c2(b−a)c=a(b+a)⇒c=(b+a)ab−a>0⇒b>aangleoftriangleatcenterofcirclec:tanθ2=b+aa+c=b+aa+(b+a)ab−a=b2−a22ab⇒θ=2tan−1b2−a22ab=π−2φangleoftriangleatcenterofcircleb:tanφ=a+cb+a=2abb2−a2⇒φ=tan−12abb2−a2areaoftriangle:A1=2(a+b)(c+a)2=(a+b)(b+ab−a+1)a=2ab(a+b)b−aareaofpartoftrianglea:A2=πa22areaofpartsoftriangleb:A3=2φ2π×πb2=φb2=b2tan−12abb2−a2areaofpartoftrianglec:A4=θ2π×πc2=π−2φ2×c2=(π2−tan−12abb2−a2)×a2(a+b)2(b−a)2areaoftherest:A=A1−(A2+A3+A4)=2ab(a+b)b−a−πa22−b2tan−12abb2−a2−(π2−tan−12abb2−a2)×a2(a+b)2(b−a)2=2ab(a+b)b−a−πa22[1+(a+b)2(b−a)2]−[b2−a2(a+b)2(b−a)2]tan−12abb2−a2=2ab(a+b)b−a−πa2[a2+b2(b−a)2]−[(a2+b2)(b2−2ab−a2)(b−a)2]tan−12abb2−a2⇒A=2ab(a+b)b−a−a2+b2(b−a)2×[πa2+(b2−a2−2ab)tan−12abb2−a2] Commented by ajfour last updated on 22/Dec/17 GreatSir,Magnificient! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-26200Next Next post: I-think-of-a-two-digit-number-The-sum-of-the-digits-is-9-When-the-number-is-reversed-and-subtracted-from-the-original-the-result-is-45-Find-the-original-number- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.