Menu Close

Question-26644




Question Number 26644 by tawa tawa last updated on 27/Dec/17
Answered by Rasheed.Sindhi last updated on 27/Dec/17
Let the side of square=x  The diagonal=(√(x^2 +x^2 ))=28(√2)  (√2)  x=28(√2)      x=28  The area of square=28^2 =784  The radius of the circle =(x/2)=14  The area of the circle=πr^2               =((22)/7)×14^2 =((22)/7)×7^2 ×2^2             =88×7=616  The Shaded area =■−•                         784−616=168 sq. cm
$$\mathrm{Let}\:\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{square}=\mathrm{x} \\ $$$$\mathrm{The}\:\mathrm{diagonal}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} }=\mathrm{28}\sqrt{\mathrm{2}} \\ $$$$\sqrt{\mathrm{2}}\:\:\mathrm{x}=\mathrm{28}\sqrt{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{x}=\mathrm{28} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{square}=\mathrm{28}^{\mathrm{2}} =\mathrm{784} \\ $$$$\mathrm{The}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:=\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{14} \\ $$$$\mathrm{The}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}=\pi\mathrm{r}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{14}^{\mathrm{2}} =\frac{\mathrm{22}}{\mathrm{7}}×\mathrm{7}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{88}×\mathrm{7}=\mathrm{616} \\ $$$$\mathrm{The}\:\mathrm{Shaded}\:\mathrm{area}\:=\blacksquare−\bullet \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{784}−\mathrm{616}=\mathrm{168}\:\mathrm{sq}.\:\mathrm{cm} \\ $$
Commented by tawa tawa last updated on 28/Dec/17
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *